Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation

High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2404828-n/a
Hauptverfasser: Xiang, Fei‐Fan, Zhang, Hong, Wu, Yan‐Ling, Chen, Yu‐Jin, Liu, Yan‐Zhao, Chen, Shan‐Yong, Guo, Yan‐Zhi, Yu, Xiao‐Qi, Li, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2404828
container_title Advanced materials (Weinheim)
container_volume 36
creator Xiang, Fei‐Fan
Zhang, Hong
Wu, Yan‐Ling
Chen, Yu‐Jin
Liu, Yan‐Zhao
Chen, Shan‐Yong
Guo, Yan‐Zhi
Yu, Xiao‐Qi
Li, Kun
description High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.
doi_str_mv 10.1002/adma.202404828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060384497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060384497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</originalsourceid><addsrcrecordid>eNqFkT9v1DAYxi1ERY_CyogssbDk8J_8scfoSinStUUF5uiN8-bOVRIfdlLUrSMjA5-wnwSHa4vEwmTL-v0ev_ZDyCvOlpwx8Q6aHpaCiZSlSqgnZMEzwZOU6ewpWTAts0TnqTokz0O4YozpnOXPyKFUheKZYgvy4wzM1g54d_tzjeAHO2zitgzBhhEbegmjdQN09BiD3QzUtfSzvft1e7l1DfTRoxDoCsYt7oIdork7nXUz2muY_U_e1Uhb52lpzOTjGT3pJucxGBwM0nO4tps_d7wgBy10AV_er0fk68n7L6vTZH3x4eOqXCdGZEolLYci0ymqrAYtgOsa4mO44K1uNSIURZ1lMudCFA2iYTXHmre1BDASlKrlEXm7z915923CMFa9jcN0HQzoplBJljOp0lQXEX3zD3rlJh9_Y6ZUrpgspIzUck8Z70Lw2FY7b3vwNxVn1dxRNXdUPXYUhdf3sVPdY_OIP5QSAb0HvtsOb_4TV5XHZ-Xf8N8KhqQm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803733</pqid></control><display><type>article</type><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</creator><creatorcontrib>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</creatorcontrib><description>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404828</identifier><identifier>PMID: 38781580</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Dyes ; fluorescence navigation ; Fluorescent indicators ; fluorescent probe ; Machine learning ; Prediction models ; Rhodamine ; signal‐to‐background ratio ; xanthene dyes</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404828-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</cites><orcidid>0000-0002-8788-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404828$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404828$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38781580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Fei‐Fan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wu, Yan‐Ling</creatorcontrib><creatorcontrib>Chen, Yu‐Jin</creatorcontrib><creatorcontrib>Liu, Yan‐Zhao</creatorcontrib><creatorcontrib>Chen, Shan‐Yong</creatorcontrib><creatorcontrib>Guo, Yan‐Zhi</creatorcontrib><creatorcontrib>Yu, Xiao‐Qi</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</description><subject>Chemical synthesis</subject><subject>Dyes</subject><subject>fluorescence navigation</subject><subject>Fluorescent indicators</subject><subject>fluorescent probe</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Rhodamine</subject><subject>signal‐to‐background ratio</subject><subject>xanthene dyes</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9v1DAYxi1ERY_CyogssbDk8J_8scfoSinStUUF5uiN8-bOVRIfdlLUrSMjA5-wnwSHa4vEwmTL-v0ev_ZDyCvOlpwx8Q6aHpaCiZSlSqgnZMEzwZOU6ewpWTAts0TnqTokz0O4YozpnOXPyKFUheKZYgvy4wzM1g54d_tzjeAHO2zitgzBhhEbegmjdQN09BiD3QzUtfSzvft1e7l1DfTRoxDoCsYt7oIdork7nXUz2muY_U_e1Uhb52lpzOTjGT3pJucxGBwM0nO4tps_d7wgBy10AV_er0fk68n7L6vTZH3x4eOqXCdGZEolLYci0ymqrAYtgOsa4mO44K1uNSIURZ1lMudCFA2iYTXHmre1BDASlKrlEXm7z915923CMFa9jcN0HQzoplBJljOp0lQXEX3zD3rlJh9_Y6ZUrpgspIzUck8Z70Lw2FY7b3vwNxVn1dxRNXdUPXYUhdf3sVPdY_OIP5QSAb0HvtsOb_4TV5XHZ-Xf8N8KhqQm</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xiang, Fei‐Fan</creator><creator>Zhang, Hong</creator><creator>Wu, Yan‐Ling</creator><creator>Chen, Yu‐Jin</creator><creator>Liu, Yan‐Zhao</creator><creator>Chen, Shan‐Yong</creator><creator>Guo, Yan‐Zhi</creator><creator>Yu, Xiao‐Qi</creator><creator>Li, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8788-1036</orcidid></search><sort><creationdate>20240801</creationdate><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><author>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical synthesis</topic><topic>Dyes</topic><topic>fluorescence navigation</topic><topic>Fluorescent indicators</topic><topic>fluorescent probe</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Rhodamine</topic><topic>signal‐to‐background ratio</topic><topic>xanthene dyes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Fei‐Fan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wu, Yan‐Ling</creatorcontrib><creatorcontrib>Chen, Yu‐Jin</creatorcontrib><creatorcontrib>Liu, Yan‐Zhao</creatorcontrib><creatorcontrib>Chen, Shan‐Yong</creatorcontrib><creatorcontrib>Guo, Yan‐Zhi</creatorcontrib><creatorcontrib>Yu, Xiao‐Qi</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Fei‐Fan</au><au>Zhang, Hong</au><au>Wu, Yan‐Ling</au><au>Chen, Yu‐Jin</au><au>Liu, Yan‐Zhao</au><au>Chen, Shan‐Yong</au><au>Guo, Yan‐Zhi</au><au>Yu, Xiao‐Qi</au><au>Li, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2404828</spage><epage>n/a</epage><pages>e2404828-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38781580</pmid><doi>10.1002/adma.202404828</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8788-1036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404828-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3060384497
source Wiley Online Library Journals Frontfile Complete
subjects Chemical synthesis
Dyes
fluorescence navigation
Fluorescent indicators
fluorescent probe
Machine learning
Prediction models
Rhodamine
signal‐to‐background ratio
xanthene dyes
title Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning%E2%80%90Assisted%20Rational%20Design%20of%20Si%E2%94%80Rhodamine%20as%20Cathepsin%E2%80%90pH%E2%80%90Activated%20Probe%20for%20Accurate%20Fluorescence%20Navigation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xiang,%20Fei%E2%80%90Fan&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2404828&rft.epage=n/a&rft.pages=e2404828-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404828&rft_dat=%3Cproquest_cross%3E3060384497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086803733&rft_id=info:pmid/38781580&rfr_iscdi=true