Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation
High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dy...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2404828-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2404828 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Xiang, Fei‐Fan Zhang, Hong Wu, Yan‐Ling Chen, Yu‐Jin Liu, Yan‐Zhao Chen, Shan‐Yong Guo, Yan‐Zhi Yu, Xiao‐Qi Li, Kun |
description | High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications. |
doi_str_mv | 10.1002/adma.202404828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060384497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060384497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</originalsourceid><addsrcrecordid>eNqFkT9v1DAYxi1ERY_CyogssbDk8J_8scfoSinStUUF5uiN8-bOVRIfdlLUrSMjA5-wnwSHa4vEwmTL-v0ev_ZDyCvOlpwx8Q6aHpaCiZSlSqgnZMEzwZOU6ewpWTAts0TnqTokz0O4YozpnOXPyKFUheKZYgvy4wzM1g54d_tzjeAHO2zitgzBhhEbegmjdQN09BiD3QzUtfSzvft1e7l1DfTRoxDoCsYt7oIdork7nXUz2muY_U_e1Uhb52lpzOTjGT3pJucxGBwM0nO4tps_d7wgBy10AV_er0fk68n7L6vTZH3x4eOqXCdGZEolLYci0ymqrAYtgOsa4mO44K1uNSIURZ1lMudCFA2iYTXHmre1BDASlKrlEXm7z915923CMFa9jcN0HQzoplBJljOp0lQXEX3zD3rlJh9_Y6ZUrpgspIzUck8Z70Lw2FY7b3vwNxVn1dxRNXdUPXYUhdf3sVPdY_OIP5QSAb0HvtsOb_4TV5XHZ-Xf8N8KhqQm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803733</pqid></control><display><type>article</type><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</creator><creatorcontrib>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</creatorcontrib><description>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404828</identifier><identifier>PMID: 38781580</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Dyes ; fluorescence navigation ; Fluorescent indicators ; fluorescent probe ; Machine learning ; Prediction models ; Rhodamine ; signal‐to‐background ratio ; xanthene dyes</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404828-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</cites><orcidid>0000-0002-8788-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404828$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404828$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38781580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Fei‐Fan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wu, Yan‐Ling</creatorcontrib><creatorcontrib>Chen, Yu‐Jin</creatorcontrib><creatorcontrib>Liu, Yan‐Zhao</creatorcontrib><creatorcontrib>Chen, Shan‐Yong</creatorcontrib><creatorcontrib>Guo, Yan‐Zhi</creatorcontrib><creatorcontrib>Yu, Xiao‐Qi</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</description><subject>Chemical synthesis</subject><subject>Dyes</subject><subject>fluorescence navigation</subject><subject>Fluorescent indicators</subject><subject>fluorescent probe</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Rhodamine</subject><subject>signal‐to‐background ratio</subject><subject>xanthene dyes</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9v1DAYxi1ERY_CyogssbDk8J_8scfoSinStUUF5uiN8-bOVRIfdlLUrSMjA5-wnwSHa4vEwmTL-v0ev_ZDyCvOlpwx8Q6aHpaCiZSlSqgnZMEzwZOU6ewpWTAts0TnqTokz0O4YozpnOXPyKFUheKZYgvy4wzM1g54d_tzjeAHO2zitgzBhhEbegmjdQN09BiD3QzUtfSzvft1e7l1DfTRoxDoCsYt7oIdork7nXUz2muY_U_e1Uhb52lpzOTjGT3pJucxGBwM0nO4tps_d7wgBy10AV_er0fk68n7L6vTZH3x4eOqXCdGZEolLYci0ymqrAYtgOsa4mO44K1uNSIURZ1lMudCFA2iYTXHmre1BDASlKrlEXm7z915923CMFa9jcN0HQzoplBJljOp0lQXEX3zD3rlJh9_Y6ZUrpgspIzUck8Z70Lw2FY7b3vwNxVn1dxRNXdUPXYUhdf3sVPdY_OIP5QSAb0HvtsOb_4TV5XHZ-Xf8N8KhqQm</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xiang, Fei‐Fan</creator><creator>Zhang, Hong</creator><creator>Wu, Yan‐Ling</creator><creator>Chen, Yu‐Jin</creator><creator>Liu, Yan‐Zhao</creator><creator>Chen, Shan‐Yong</creator><creator>Guo, Yan‐Zhi</creator><creator>Yu, Xiao‐Qi</creator><creator>Li, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8788-1036</orcidid></search><sort><creationdate>20240801</creationdate><title>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</title><author>Xiang, Fei‐Fan ; Zhang, Hong ; Wu, Yan‐Ling ; Chen, Yu‐Jin ; Liu, Yan‐Zhao ; Chen, Shan‐Yong ; Guo, Yan‐Zhi ; Yu, Xiao‐Qi ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-f1a7594e85ba92a19ba387121f9f9eea77b55361227deec0b1eb1fb3aac3a88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical synthesis</topic><topic>Dyes</topic><topic>fluorescence navigation</topic><topic>Fluorescent indicators</topic><topic>fluorescent probe</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Rhodamine</topic><topic>signal‐to‐background ratio</topic><topic>xanthene dyes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Fei‐Fan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wu, Yan‐Ling</creatorcontrib><creatorcontrib>Chen, Yu‐Jin</creatorcontrib><creatorcontrib>Liu, Yan‐Zhao</creatorcontrib><creatorcontrib>Chen, Shan‐Yong</creatorcontrib><creatorcontrib>Guo, Yan‐Zhi</creatorcontrib><creatorcontrib>Yu, Xiao‐Qi</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Fei‐Fan</au><au>Zhang, Hong</au><au>Wu, Yan‐Ling</au><au>Chen, Yu‐Jin</au><au>Liu, Yan‐Zhao</au><au>Chen, Shan‐Yong</au><au>Guo, Yan‐Zhi</au><au>Yu, Xiao‐Qi</au><au>Li, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2404828</spage><epage>n/a</epage><pages>e2404828-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38781580</pmid><doi>10.1002/adma.202404828</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8788-1036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404828-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3060384497 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical synthesis Dyes fluorescence navigation Fluorescent indicators fluorescent probe Machine learning Prediction models Rhodamine signal‐to‐background ratio xanthene dyes |
title | Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning%E2%80%90Assisted%20Rational%20Design%20of%20Si%E2%94%80Rhodamine%20as%20Cathepsin%E2%80%90pH%E2%80%90Activated%20Probe%20for%20Accurate%20Fluorescence%20Navigation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xiang,%20Fei%E2%80%90Fan&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2404828&rft.epage=n/a&rft.pages=e2404828-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404828&rft_dat=%3Cproquest_cross%3E3060384497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086803733&rft_id=info:pmid/38781580&rfr_iscdi=true |