Predicting class switch recombination in B‐cells from antibody repertoire data
Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2024-06, Vol.66 (4), p.e2300171-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e2300171 |
container_title | Biometrical journal |
container_volume | 66 |
creator | Servius, Lutecia Pigoli, Davide Ng, Joseph Fraternali, Franca |
description | Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge. |
doi_str_mv | 10.1002/bimj.202300171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060380430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060380430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</originalsourceid><addsrcrecordid>eNqF0L9OwzAQBnALgaAUVkYUiYUl5exzEmcExF-B6MAeXRwHXCVxsVNV3XgEnpEnIVWBgYXplt99d_oYO-Iw4QDirLTtbCJAIADP-BYb8UTwWAKm22wEKDBGJbM9th_CDABykGKX7aHK1ODEiE2n3lRW97Z7iXRDIURhaXv9GnmjXVvajnrrush20cXn-4c2TROi2rs2oq63patWA5wb3zvrTVRRTwdsp6YmmMPvOWbP11fPl7fxw9PN3eX5Q6wxRYh1VhtSSS2F5qhMTkpyJankipJaZVzUlEOVlGmKGWRCEUFJlMsUMkST4pidbmLn3r0tTOiL1ob1e9QZtwgFQgqoQCIM9OQPnbmF74bn1mq4leS5GtRko7R3IXhTF3NvW_KrgkOxrrpYV138Vj0sHH_HLsrWVL_8p9sByA1Y2sas_okrLu4e70WiAL8AtruJrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068715998</pqid></control><display><type>article</type><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</creator><creatorcontrib>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</creatorcontrib><description>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202300171</identifier><identifier>PMID: 38785212</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Animals ; Antibodies ; Antibodies - immunology ; Antibody response ; B-Lymphocytes - immunology ; balanced accuracy ; Biometry - methods ; Class switching ; clonal groups ; Humans ; immune responses ; Immune system ; Immunoglobulin Class Switching ; Immunology ; Machine learning ; Mice ; Performance prediction ; predictive models ; Recombination ; Recombination, Genetic ; Regression analysis ; Statistical analysis ; Support vector machines ; Variable region</subject><ispartof>Biometrical journal, 2024-06, Vol.66 (4), p.e2300171-n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024 The Authors. Biometrical Journal published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</cites><orcidid>0009-0004-4573-1912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202300171$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202300171$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38785212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Servius, Lutecia</creatorcontrib><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><creatorcontrib>Fraternali, Franca</creatorcontrib><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies - immunology</subject><subject>Antibody response</subject><subject>B-Lymphocytes - immunology</subject><subject>balanced accuracy</subject><subject>Biometry - methods</subject><subject>Class switching</subject><subject>clonal groups</subject><subject>Humans</subject><subject>immune responses</subject><subject>Immune system</subject><subject>Immunoglobulin Class Switching</subject><subject>Immunology</subject><subject>Machine learning</subject><subject>Mice</subject><subject>Performance prediction</subject><subject>predictive models</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Variable region</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqF0L9OwzAQBnALgaAUVkYUiYUl5exzEmcExF-B6MAeXRwHXCVxsVNV3XgEnpEnIVWBgYXplt99d_oYO-Iw4QDirLTtbCJAIADP-BYb8UTwWAKm22wEKDBGJbM9th_CDABykGKX7aHK1ODEiE2n3lRW97Z7iXRDIURhaXv9GnmjXVvajnrrush20cXn-4c2TROi2rs2oq63patWA5wb3zvrTVRRTwdsp6YmmMPvOWbP11fPl7fxw9PN3eX5Q6wxRYh1VhtSSS2F5qhMTkpyJankipJaZVzUlEOVlGmKGWRCEUFJlMsUMkST4pidbmLn3r0tTOiL1ob1e9QZtwgFQgqoQCIM9OQPnbmF74bn1mq4leS5GtRko7R3IXhTF3NvW_KrgkOxrrpYV138Vj0sHH_HLsrWVL_8p9sByA1Y2sas_okrLu4e70WiAL8AtruJrw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Servius, Lutecia</creator><creator>Pigoli, Davide</creator><creator>Ng, Joseph</creator><creator>Fraternali, Franca</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-4573-1912</orcidid></search><sort><creationdate>202406</creationdate><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><author>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies - immunology</topic><topic>Antibody response</topic><topic>B-Lymphocytes - immunology</topic><topic>balanced accuracy</topic><topic>Biometry - methods</topic><topic>Class switching</topic><topic>clonal groups</topic><topic>Humans</topic><topic>immune responses</topic><topic>Immune system</topic><topic>Immunoglobulin Class Switching</topic><topic>Immunology</topic><topic>Machine learning</topic><topic>Mice</topic><topic>Performance prediction</topic><topic>predictive models</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Variable region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servius, Lutecia</creatorcontrib><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><creatorcontrib>Fraternali, Franca</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servius, Lutecia</au><au>Pigoli, Davide</au><au>Ng, Joseph</au><au>Fraternali, Franca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting class switch recombination in B‐cells from antibody repertoire data</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>66</volume><issue>4</issue><spage>e2300171</spage><epage>n/a</epage><pages>e2300171-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>38785212</pmid><doi>10.1002/bimj.202300171</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0004-4573-1912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2024-06, Vol.66 (4), p.e2300171-n/a |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_3060380430 |
source | Access via Wiley Online Library; MEDLINE |
subjects | Animals Antibodies Antibodies - immunology Antibody response B-Lymphocytes - immunology balanced accuracy Biometry - methods Class switching clonal groups Humans immune responses Immune system Immunoglobulin Class Switching Immunology Machine learning Mice Performance prediction predictive models Recombination Recombination, Genetic Regression analysis Statistical analysis Support vector machines Variable region |
title | Predicting class switch recombination in B‐cells from antibody repertoire data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20class%20switch%20recombination%20in%20B%E2%80%90cells%20from%20antibody%20repertoire%20data&rft.jtitle=Biometrical%20journal&rft.au=Servius,%20Lutecia&rft.date=2024-06&rft.volume=66&rft.issue=4&rft.spage=e2300171&rft.epage=n/a&rft.pages=e2300171-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202300171&rft_dat=%3Cproquest_cross%3E3060380430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068715998&rft_id=info:pmid/38785212&rfr_iscdi=true |