Predicting class switch recombination in B‐cells from antibody repertoire data

Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-06, Vol.66 (4), p.e2300171-n/a
Hauptverfasser: Servius, Lutecia, Pigoli, Davide, Ng, Joseph, Fraternali, Franca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e2300171
container_title Biometrical journal
container_volume 66
creator Servius, Lutecia
Pigoli, Davide
Ng, Joseph
Fraternali, Franca
description Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.
doi_str_mv 10.1002/bimj.202300171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060380430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060380430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</originalsourceid><addsrcrecordid>eNqF0L9OwzAQBnALgaAUVkYUiYUl5exzEmcExF-B6MAeXRwHXCVxsVNV3XgEnpEnIVWBgYXplt99d_oYO-Iw4QDirLTtbCJAIADP-BYb8UTwWAKm22wEKDBGJbM9th_CDABykGKX7aHK1ODEiE2n3lRW97Z7iXRDIURhaXv9GnmjXVvajnrrush20cXn-4c2TROi2rs2oq63patWA5wb3zvrTVRRTwdsp6YmmMPvOWbP11fPl7fxw9PN3eX5Q6wxRYh1VhtSSS2F5qhMTkpyJankipJaZVzUlEOVlGmKGWRCEUFJlMsUMkST4pidbmLn3r0tTOiL1ob1e9QZtwgFQgqoQCIM9OQPnbmF74bn1mq4leS5GtRko7R3IXhTF3NvW_KrgkOxrrpYV138Vj0sHH_HLsrWVL_8p9sByA1Y2sas_okrLu4e70WiAL8AtruJrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068715998</pqid></control><display><type>article</type><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</creator><creatorcontrib>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</creatorcontrib><description>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202300171</identifier><identifier>PMID: 38785212</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Animals ; Antibodies ; Antibodies - immunology ; Antibody response ; B-Lymphocytes - immunology ; balanced accuracy ; Biometry - methods ; Class switching ; clonal groups ; Humans ; immune responses ; Immune system ; Immunoglobulin Class Switching ; Immunology ; Machine learning ; Mice ; Performance prediction ; predictive models ; Recombination ; Recombination, Genetic ; Regression analysis ; Statistical analysis ; Support vector machines ; Variable region</subject><ispartof>Biometrical journal, 2024-06, Vol.66 (4), p.e2300171-n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024 The Authors. Biometrical Journal published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</cites><orcidid>0009-0004-4573-1912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202300171$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202300171$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38785212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Servius, Lutecia</creatorcontrib><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><creatorcontrib>Fraternali, Franca</creatorcontrib><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies - immunology</subject><subject>Antibody response</subject><subject>B-Lymphocytes - immunology</subject><subject>balanced accuracy</subject><subject>Biometry - methods</subject><subject>Class switching</subject><subject>clonal groups</subject><subject>Humans</subject><subject>immune responses</subject><subject>Immune system</subject><subject>Immunoglobulin Class Switching</subject><subject>Immunology</subject><subject>Machine learning</subject><subject>Mice</subject><subject>Performance prediction</subject><subject>predictive models</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Variable region</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqF0L9OwzAQBnALgaAUVkYUiYUl5exzEmcExF-B6MAeXRwHXCVxsVNV3XgEnpEnIVWBgYXplt99d_oYO-Iw4QDirLTtbCJAIADP-BYb8UTwWAKm22wEKDBGJbM9th_CDABykGKX7aHK1ODEiE2n3lRW97Z7iXRDIURhaXv9GnmjXVvajnrrush20cXn-4c2TROi2rs2oq63patWA5wb3zvrTVRRTwdsp6YmmMPvOWbP11fPl7fxw9PN3eX5Q6wxRYh1VhtSSS2F5qhMTkpyJankipJaZVzUlEOVlGmKGWRCEUFJlMsUMkST4pidbmLn3r0tTOiL1ob1e9QZtwgFQgqoQCIM9OQPnbmF74bn1mq4leS5GtRko7R3IXhTF3NvW_KrgkOxrrpYV138Vj0sHH_HLsrWVL_8p9sByA1Y2sas_okrLu4e70WiAL8AtruJrw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Servius, Lutecia</creator><creator>Pigoli, Davide</creator><creator>Ng, Joseph</creator><creator>Fraternali, Franca</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-4573-1912</orcidid></search><sort><creationdate>202406</creationdate><title>Predicting class switch recombination in B‐cells from antibody repertoire data</title><author>Servius, Lutecia ; Pigoli, Davide ; Ng, Joseph ; Fraternali, Franca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-c7fea85f42c138e9a84184ab18a5f8712fa90d5b66370728aa0baa9460733e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies - immunology</topic><topic>Antibody response</topic><topic>B-Lymphocytes - immunology</topic><topic>balanced accuracy</topic><topic>Biometry - methods</topic><topic>Class switching</topic><topic>clonal groups</topic><topic>Humans</topic><topic>immune responses</topic><topic>Immune system</topic><topic>Immunoglobulin Class Switching</topic><topic>Immunology</topic><topic>Machine learning</topic><topic>Mice</topic><topic>Performance prediction</topic><topic>predictive models</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Variable region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servius, Lutecia</creatorcontrib><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><creatorcontrib>Fraternali, Franca</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servius, Lutecia</au><au>Pigoli, Davide</au><au>Ng, Joseph</au><au>Fraternali, Franca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting class switch recombination in B‐cells from antibody repertoire data</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>66</volume><issue>4</issue><spage>e2300171</spage><epage>n/a</epage><pages>e2300171-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B‐cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71%$71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>38785212</pmid><doi>10.1002/bimj.202300171</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0004-4573-1912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-06, Vol.66 (4), p.e2300171-n/a
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_3060380430
source Access via Wiley Online Library; MEDLINE
subjects Animals
Antibodies
Antibodies - immunology
Antibody response
B-Lymphocytes - immunology
balanced accuracy
Biometry - methods
Class switching
clonal groups
Humans
immune responses
Immune system
Immunoglobulin Class Switching
Immunology
Machine learning
Mice
Performance prediction
predictive models
Recombination
Recombination, Genetic
Regression analysis
Statistical analysis
Support vector machines
Variable region
title Predicting class switch recombination in B‐cells from antibody repertoire data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20class%20switch%20recombination%20in%20B%E2%80%90cells%20from%20antibody%20repertoire%20data&rft.jtitle=Biometrical%20journal&rft.au=Servius,%20Lutecia&rft.date=2024-06&rft.volume=66&rft.issue=4&rft.spage=e2300171&rft.epage=n/a&rft.pages=e2300171-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202300171&rft_dat=%3Cproquest_cross%3E3060380430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068715998&rft_id=info:pmid/38785212&rfr_iscdi=true