Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis

is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on is lacking. To resolve the genetic composition of within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequenci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2024-04, Vol.15 (5), p.546
Hauptverfasser: Wei, Peng, Li, Youzheng, Ke, Mei, Hou, Yurong, Aikebaier, Abudureyimu, Wu, Zinian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 546
container_title Genes
container_volume 15
creator Wei, Peng
Li, Youzheng
Ke, Mei
Hou, Yurong
Aikebaier, Abudureyimu
Wu, Zinian
description is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on is lacking. To resolve the genetic composition of within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in , with some genes ( , , ) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed , , , and to have a close monophyletic relationship. By sequencing the chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.
doi_str_mv 10.3390/genes15050546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060374503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060374503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-880021ea9434e5e340ed680f99348d42f06c0d85fd66bd595e06a1a878c525403</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbKk9epUFL16ik-xHEm-laBULetBz2CYTuzXZjbtJpf-9CVVRZw4zAz8ej3mEnIZwyVgKV69o0IcC-ubygIwjiFnAeSQOf-0jMvV-A31xiADEMRmxJE4hjOWYlHNbNxW2SOfryjrbVMq3dIHG1khtSR-c8vkajTZGv9mtVhQ_0Pla9bcyil7TQUA51eotUmUK-rTeVXYw1uqczoyqdl77E3JUqsrj9GtOyMvtzfP8Llg-Lu7ns2WQs1C2QZIARCGqlDOOAhkHLGQCZZoynhQ8KkHmUCSiLKRcFSIVCFKFKomTXESCA5uQi71u4-x7h77Nau1zrCpl0HY-YyCBxVwA69Hzf-jGdq73O1C9dCiFGKhgT-XOeu-wzBqna-V2WQjZkEH2J4OeP_tS7VY1Fj_098fZJ4lfgeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059516553</pqid></control><display><type>article</type><title>Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wei, Peng ; Li, Youzheng ; Ke, Mei ; Hou, Yurong ; Aikebaier, Abudureyimu ; Wu, Zinian</creator><creatorcontrib>Wei, Peng ; Li, Youzheng ; Ke, Mei ; Hou, Yurong ; Aikebaier, Abudureyimu ; Wu, Zinian</creatorcontrib><description>is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on is lacking. To resolve the genetic composition of within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in , with some genes ( , , ) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed , , , and to have a close monophyletic relationship. By sequencing the chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes15050546</identifier><identifier>PMID: 38790176</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amaranthaceae ; Amaranthaceae - genetics ; Animal sciences ; China ; Chloroplasts ; Chloroplasts - genetics ; Codon Usage ; Codons ; Dysphania ; Evolution, Molecular ; Genome, Chloroplast ; Genomes ; Genomics ; Geographical distribution ; Germplasm ; Grasslands ; Inverted repeat ; Krascheninnikovia ; Microsatellite Repeats - genetics ; Molecular Sequence Annotation ; Phylogenetics ; Phylogeny ; Physiology ; Simple sequence repeats ; Software ; Taxonomy</subject><ispartof>Genes, 2024-04, Vol.15 (5), p.546</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-880021ea9434e5e340ed680f99348d42f06c0d85fd66bd595e06a1a878c525403</cites><orcidid>0000-0002-4121-4529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38790176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Li, Youzheng</creatorcontrib><creatorcontrib>Ke, Mei</creatorcontrib><creatorcontrib>Hou, Yurong</creatorcontrib><creatorcontrib>Aikebaier, Abudureyimu</creatorcontrib><creatorcontrib>Wu, Zinian</creatorcontrib><title>Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on is lacking. To resolve the genetic composition of within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in , with some genes ( , , ) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed , , , and to have a close monophyletic relationship. By sequencing the chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.</description><subject>Amaranthaceae</subject><subject>Amaranthaceae - genetics</subject><subject>Animal sciences</subject><subject>China</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Codon Usage</subject><subject>Codons</subject><subject>Dysphania</subject><subject>Evolution, Molecular</subject><subject>Genome, Chloroplast</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Geographical distribution</subject><subject>Germplasm</subject><subject>Grasslands</subject><subject>Inverted repeat</subject><subject>Krascheninnikovia</subject><subject>Microsatellite Repeats - genetics</subject><subject>Molecular Sequence Annotation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Simple sequence repeats</subject><subject>Software</subject><subject>Taxonomy</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1Lw0AQxRdRbKk9epUFL16ik-xHEm-laBULetBz2CYTuzXZjbtJpf-9CVVRZw4zAz8ej3mEnIZwyVgKV69o0IcC-ubygIwjiFnAeSQOf-0jMvV-A31xiADEMRmxJE4hjOWYlHNbNxW2SOfryjrbVMq3dIHG1khtSR-c8vkajTZGv9mtVhQ_0Pla9bcyil7TQUA51eotUmUK-rTeVXYw1uqczoyqdl77E3JUqsrj9GtOyMvtzfP8Llg-Lu7ns2WQs1C2QZIARCGqlDOOAhkHLGQCZZoynhQ8KkHmUCSiLKRcFSIVCFKFKomTXESCA5uQi71u4-x7h77Nau1zrCpl0HY-YyCBxVwA69Hzf-jGdq73O1C9dCiFGKhgT-XOeu-wzBqna-V2WQjZkEH2J4OeP_tS7VY1Fj_098fZJ4lfgeY</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Wei, Peng</creator><creator>Li, Youzheng</creator><creator>Ke, Mei</creator><creator>Hou, Yurong</creator><creator>Aikebaier, Abudureyimu</creator><creator>Wu, Zinian</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4121-4529</orcidid></search><sort><creationdate>20240425</creationdate><title>Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis</title><author>Wei, Peng ; Li, Youzheng ; Ke, Mei ; Hou, Yurong ; Aikebaier, Abudureyimu ; Wu, Zinian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-880021ea9434e5e340ed680f99348d42f06c0d85fd66bd595e06a1a878c525403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amaranthaceae</topic><topic>Amaranthaceae - genetics</topic><topic>Animal sciences</topic><topic>China</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Codon Usage</topic><topic>Codons</topic><topic>Dysphania</topic><topic>Evolution, Molecular</topic><topic>Genome, Chloroplast</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Geographical distribution</topic><topic>Germplasm</topic><topic>Grasslands</topic><topic>Inverted repeat</topic><topic>Krascheninnikovia</topic><topic>Microsatellite Repeats - genetics</topic><topic>Molecular Sequence Annotation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Simple sequence repeats</topic><topic>Software</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Li, Youzheng</creatorcontrib><creatorcontrib>Ke, Mei</creatorcontrib><creatorcontrib>Hou, Yurong</creatorcontrib><creatorcontrib>Aikebaier, Abudureyimu</creatorcontrib><creatorcontrib>Wu, Zinian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Peng</au><au>Li, Youzheng</au><au>Ke, Mei</au><au>Hou, Yurong</au><au>Aikebaier, Abudureyimu</au><au>Wu, Zinian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2024-04-25</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>546</spage><pages>546-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on is lacking. To resolve the genetic composition of within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in , with some genes ( , , ) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed , , , and to have a close monophyletic relationship. By sequencing the chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38790176</pmid><doi>10.3390/genes15050546</doi><orcidid>https://orcid.org/0000-0002-4121-4529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2024-04, Vol.15 (5), p.546
issn 2073-4425
2073-4425
language eng
recordid cdi_proquest_miscellaneous_3060374503
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amaranthaceae
Amaranthaceae - genetics
Animal sciences
China
Chloroplasts
Chloroplasts - genetics
Codon Usage
Codons
Dysphania
Evolution, Molecular
Genome, Chloroplast
Genomes
Genomics
Geographical distribution
Germplasm
Grasslands
Inverted repeat
Krascheninnikovia
Microsatellite Repeats - genetics
Molecular Sequence Annotation
Phylogenetics
Phylogeny
Physiology
Simple sequence repeats
Software
Taxonomy
title Complete Chloroplast Genome of Krascheninnikovia ewersmanniana : Comparative and Phylogenetic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Chloroplast%20Genome%20of%20Krascheninnikovia%20ewersmanniana%20:%20Comparative%20and%20Phylogenetic%20Analysis&rft.jtitle=Genes&rft.au=Wei,%20Peng&rft.date=2024-04-25&rft.volume=15&rft.issue=5&rft.spage=546&rft.pages=546-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes15050546&rft_dat=%3Cproquest_cross%3E3060374503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059516553&rft_id=info:pmid/38790176&rfr_iscdi=true