Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region

Objective Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. Materials and methods Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical oral investigations 2024-05, Vol.28 (6), p.336, Article 336
Hauptverfasser: de Almeida, Marcus Vinicius Rocha, Ribeiro, Michele Costa Oliveira, dos Reis-Neta, Gilda Rocha, Vargas-Moreno, Vanessa Felipe, Gomes, Rafael Soares, da Silva, Wander José, Del Bel Cury, Altair Antoninha, Marcello-Machado, Raissa Micaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 336
container_title Clinical oral investigations
container_volume 28
creator de Almeida, Marcus Vinicius Rocha
Ribeiro, Michele Costa Oliveira
dos Reis-Neta, Gilda Rocha
Vargas-Moreno, Vanessa Felipe
Gomes, Rafael Soares
da Silva, Wander José
Del Bel Cury, Altair Antoninha
Marcello-Machado, Raissa Micaella
description Objective Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. Materials and methods Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30 o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. Results The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. Conclusion Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. Clinical relevance The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.
doi_str_mv 10.1007/s00784-024-05722-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060372793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060074705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1dce1d1315a5c59a5171fc435c88a29010f276877b464387ba3e9de5f47122753</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EoqXwBxiQJRaWgD_iOGFDpXyISjDAbDmJU6VKnOJzhPj3uE0LiIHBPuvuudc-vwidUnJJCZFXELY0jggLS0jGIraHxjTmScSlpPu_ziN0BLAkhMaJ5IdoxFOZCSbSMSpujfW6wXW7arT1WNsS67z3bUjj2uKX2ezpGoN3BgBrgBB2JajtojG4cN2Hxc54XVvjAHc2iHjj6s6F7KLu7DE6qHQD5mQbJ-jtbvY6fYjmz_eP05t5VDCR-IiWhaEl5VRoUYhMCyppVcRcFGmqWUYoqZhMUinzOInDBLnmJiuNqGJJGZOCT9DFoLty3XtvwKu2hsI0YTDT9aA4SQiXTGY8oOd_0GXXOxtet6GIjCVZC7KBCjMCOFOplatb7T4VJWptgRosUMECtbFAsdB0tpXu89aU3y27Pw8AHwAIJbsw7ufuf2S_AGcpkDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060074705</pqid></control><display><type>article</type><title>Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>de Almeida, Marcus Vinicius Rocha ; Ribeiro, Michele Costa Oliveira ; dos Reis-Neta, Gilda Rocha ; Vargas-Moreno, Vanessa Felipe ; Gomes, Rafael Soares ; da Silva, Wander José ; Del Bel Cury, Altair Antoninha ; Marcello-Machado, Raissa Micaella</creator><creatorcontrib>de Almeida, Marcus Vinicius Rocha ; Ribeiro, Michele Costa Oliveira ; dos Reis-Neta, Gilda Rocha ; Vargas-Moreno, Vanessa Felipe ; Gomes, Rafael Soares ; da Silva, Wander José ; Del Bel Cury, Altair Antoninha ; Marcello-Machado, Raissa Micaella</creatorcontrib><description>Objective Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. Materials and methods Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30 o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. Results The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. Conclusion Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. Clinical relevance The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.</description><identifier>ISSN: 1436-3771</identifier><identifier>ISSN: 1432-6981</identifier><identifier>EISSN: 1436-3771</identifier><identifier>DOI: 10.1007/s00784-024-05722-2</identifier><identifier>PMID: 38795258</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Benzophenones ; Bone implants ; Cancellous bone ; Carbon Fiber - chemistry ; Cortical Bone ; Crowns ; Dental Abutments ; Dental crowns ; Dental Implant-Abutment Design ; Dental implants ; Dental Implants, Single-Tooth ; Dental Materials - chemistry ; Dental Prosthesis Design ; Dental prosthetics ; Dental Stress Analysis ; Dentistry ; Finite Element Analysis ; Glass - chemistry ; Humans ; Incisor ; Ketones - chemistry ; Materials Testing ; Medicine ; Medullary bone ; Polyethylene Glycols - chemistry ; Polymers ; Titanium - chemistry ; Zirconia ; Zirconium - chemistry</subject><ispartof>Clinical oral investigations, 2024-05, Vol.28 (6), p.336, Article 336</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-1dce1d1315a5c59a5171fc435c88a29010f276877b464387ba3e9de5f47122753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00784-024-05722-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00784-024-05722-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38795258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Almeida, Marcus Vinicius Rocha</creatorcontrib><creatorcontrib>Ribeiro, Michele Costa Oliveira</creatorcontrib><creatorcontrib>dos Reis-Neta, Gilda Rocha</creatorcontrib><creatorcontrib>Vargas-Moreno, Vanessa Felipe</creatorcontrib><creatorcontrib>Gomes, Rafael Soares</creatorcontrib><creatorcontrib>da Silva, Wander José</creatorcontrib><creatorcontrib>Del Bel Cury, Altair Antoninha</creatorcontrib><creatorcontrib>Marcello-Machado, Raissa Micaella</creatorcontrib><title>Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region</title><title>Clinical oral investigations</title><addtitle>Clin Oral Invest</addtitle><addtitle>Clin Oral Investig</addtitle><description>Objective Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. Materials and methods Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30 o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. Results The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. Conclusion Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. Clinical relevance The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.</description><subject>Benzophenones</subject><subject>Bone implants</subject><subject>Cancellous bone</subject><subject>Carbon Fiber - chemistry</subject><subject>Cortical Bone</subject><subject>Crowns</subject><subject>Dental Abutments</subject><subject>Dental crowns</subject><subject>Dental Implant-Abutment Design</subject><subject>Dental implants</subject><subject>Dental Implants, Single-Tooth</subject><subject>Dental Materials - chemistry</subject><subject>Dental Prosthesis Design</subject><subject>Dental prosthetics</subject><subject>Dental Stress Analysis</subject><subject>Dentistry</subject><subject>Finite Element Analysis</subject><subject>Glass - chemistry</subject><subject>Humans</subject><subject>Incisor</subject><subject>Ketones - chemistry</subject><subject>Materials Testing</subject><subject>Medicine</subject><subject>Medullary bone</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Titanium - chemistry</subject><subject>Zirconia</subject><subject>Zirconium - chemistry</subject><issn>1436-3771</issn><issn>1432-6981</issn><issn>1436-3771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1PwzAQhi0EoqXwBxiQJRaWgD_iOGFDpXyISjDAbDmJU6VKnOJzhPj3uE0LiIHBPuvuudc-vwidUnJJCZFXELY0jggLS0jGIraHxjTmScSlpPu_ziN0BLAkhMaJ5IdoxFOZCSbSMSpujfW6wXW7arT1WNsS67z3bUjj2uKX2ezpGoN3BgBrgBB2JajtojG4cN2Hxc54XVvjAHc2iHjj6s6F7KLu7DE6qHQD5mQbJ-jtbvY6fYjmz_eP05t5VDCR-IiWhaEl5VRoUYhMCyppVcRcFGmqWUYoqZhMUinzOInDBLnmJiuNqGJJGZOCT9DFoLty3XtvwKu2hsI0YTDT9aA4SQiXTGY8oOd_0GXXOxtet6GIjCVZC7KBCjMCOFOplatb7T4VJWptgRosUMECtbFAsdB0tpXu89aU3y27Pw8AHwAIJbsw7ufuf2S_AGcpkDU</recordid><startdate>20240525</startdate><enddate>20240525</enddate><creator>de Almeida, Marcus Vinicius Rocha</creator><creator>Ribeiro, Michele Costa Oliveira</creator><creator>dos Reis-Neta, Gilda Rocha</creator><creator>Vargas-Moreno, Vanessa Felipe</creator><creator>Gomes, Rafael Soares</creator><creator>da Silva, Wander José</creator><creator>Del Bel Cury, Altair Antoninha</creator><creator>Marcello-Machado, Raissa Micaella</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240525</creationdate><title>Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region</title><author>de Almeida, Marcus Vinicius Rocha ; Ribeiro, Michele Costa Oliveira ; dos Reis-Neta, Gilda Rocha ; Vargas-Moreno, Vanessa Felipe ; Gomes, Rafael Soares ; da Silva, Wander José ; Del Bel Cury, Altair Antoninha ; Marcello-Machado, Raissa Micaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1dce1d1315a5c59a5171fc435c88a29010f276877b464387ba3e9de5f47122753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzophenones</topic><topic>Bone implants</topic><topic>Cancellous bone</topic><topic>Carbon Fiber - chemistry</topic><topic>Cortical Bone</topic><topic>Crowns</topic><topic>Dental Abutments</topic><topic>Dental crowns</topic><topic>Dental Implant-Abutment Design</topic><topic>Dental implants</topic><topic>Dental Implants, Single-Tooth</topic><topic>Dental Materials - chemistry</topic><topic>Dental Prosthesis Design</topic><topic>Dental prosthetics</topic><topic>Dental Stress Analysis</topic><topic>Dentistry</topic><topic>Finite Element Analysis</topic><topic>Glass - chemistry</topic><topic>Humans</topic><topic>Incisor</topic><topic>Ketones - chemistry</topic><topic>Materials Testing</topic><topic>Medicine</topic><topic>Medullary bone</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Titanium - chemistry</topic><topic>Zirconia</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Marcus Vinicius Rocha</creatorcontrib><creatorcontrib>Ribeiro, Michele Costa Oliveira</creatorcontrib><creatorcontrib>dos Reis-Neta, Gilda Rocha</creatorcontrib><creatorcontrib>Vargas-Moreno, Vanessa Felipe</creatorcontrib><creatorcontrib>Gomes, Rafael Soares</creatorcontrib><creatorcontrib>da Silva, Wander José</creatorcontrib><creatorcontrib>Del Bel Cury, Altair Antoninha</creatorcontrib><creatorcontrib>Marcello-Machado, Raissa Micaella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical oral investigations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Marcus Vinicius Rocha</au><au>Ribeiro, Michele Costa Oliveira</au><au>dos Reis-Neta, Gilda Rocha</au><au>Vargas-Moreno, Vanessa Felipe</au><au>Gomes, Rafael Soares</au><au>da Silva, Wander José</au><au>Del Bel Cury, Altair Antoninha</au><au>Marcello-Machado, Raissa Micaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region</atitle><jtitle>Clinical oral investigations</jtitle><stitle>Clin Oral Invest</stitle><addtitle>Clin Oral Investig</addtitle><date>2024-05-25</date><risdate>2024</risdate><volume>28</volume><issue>6</issue><spage>336</spage><pages>336-</pages><artnum>336</artnum><issn>1436-3771</issn><issn>1432-6981</issn><eissn>1436-3771</eissn><abstract>Objective Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. Materials and methods Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30 o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. Results The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. Conclusion Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. Clinical relevance The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38795258</pmid><doi>10.1007/s00784-024-05722-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1436-3771
ispartof Clinical oral investigations, 2024-05, Vol.28 (6), p.336, Article 336
issn 1436-3771
1432-6981
1436-3771
language eng
recordid cdi_proquest_miscellaneous_3060372793
source MEDLINE; SpringerLink Journals
subjects Benzophenones
Bone implants
Cancellous bone
Carbon Fiber - chemistry
Cortical Bone
Crowns
Dental Abutments
Dental crowns
Dental Implant-Abutment Design
Dental implants
Dental Implants, Single-Tooth
Dental Materials - chemistry
Dental Prosthesis Design
Dental prosthetics
Dental Stress Analysis
Dentistry
Finite Element Analysis
Glass - chemistry
Humans
Incisor
Ketones - chemistry
Materials Testing
Medicine
Medullary bone
Polyethylene Glycols - chemistry
Polymers
Titanium - chemistry
Zirconia
Zirconium - chemistry
title Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dental%20implant%20and%20abutment%20in%20PEEK:%20stress%20assessment%20in%20single%20crown%20retainers%20on%20anterior%20region&rft.jtitle=Clinical%20oral%20investigations&rft.au=de%20Almeida,%20Marcus%20Vinicius%20Rocha&rft.date=2024-05-25&rft.volume=28&rft.issue=6&rft.spage=336&rft.pages=336-&rft.artnum=336&rft.issn=1436-3771&rft.eissn=1436-3771&rft_id=info:doi/10.1007/s00784-024-05722-2&rft_dat=%3Cproquest_cross%3E3060074705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060074705&rft_id=info:pmid/38795258&rfr_iscdi=true