A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices
Soft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leverag...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2402309-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2402309 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Hertle, Lukas Sevim, Semih Zhu, Jiawei Pustovalov, Vitaly Veciana, Andrea Llacer‐Wintle, Joaquin Landers, Fabian C. Ye, Hao Chen, Xiang‐Zhong Vogler, Hannes Grossniklaus, Ueli Puigmartí‐Luis, Josep Nelson, Bradley J. Pané, Salvador |
description | Soft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes to generate multifunctional and compartmentalized calcium‐cross‐linkable alginate‐based microfibers. Under RD conditions, sophisticated alginate‐based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross‐linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll‐up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small‐scale devices.
Here, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes for generating multifunctional and compartmentalized alginate‐based microfibers. This nature‐inspired RD process allows for producing sophisticated fibers acting as magnetic soft continuum robots. The method allows for tailoring the stiffness and magnetic responsiveness of the microfibers via customizing the geometry, degree of cross‐linking, and spatial localization of magnetic nanoparticles. |
doi_str_mv | 10.1002/adma.202402309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3059257053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086803211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2989-7aaf6d150da1d79ada6ec222c5ab8e8ce02b2c8502bf05c90019bc04cbc4a6033</originalsourceid><addsrcrecordid>eNqFkbFuFDEQhi1ERI5AS4lWoqHZY-xd79nlcgkQKRcKQr2a9XqDI6992GvgOipqnpEnwadLgpSGauSZbz559BPygsKSArA3OEy4ZMBqYBXIR2RBOaNlDZI_JguQFS9lU4tj8jTGGwCQDTRPyHElViK_qgX51RaXOKeA1u6Kcxe3JuihOPsxhxSNd39-_n6LMXc2RgU_2mQGo4p2uw0e1Zdi9KHYoEsjquww7rq4QmN9wN7qPLh2es74Jz_Oxdq72biUpoMq-N7vZ6f6m1E6PiNHI9qon9_WE_L53dnV-kN58fH9-bq9KBWTQpYrxLEZKIcB6bCSOGCjFWNMceyFFkoD65kSPJcRuJIAVPYKatWrGhuoqhPy-uDNB3xNOs7dZKLS1qLTPsWuAi4ZXwHfo68eoDc-BZd_lynRCKgYpZlaHqh8U4xBj902mAnDrqPQ7RPq9gl19wnlhZe32tRPerjH7yLJgDwA343Vu__ouvZ00_6T_wWh5aAr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803211</pqid></control><display><type>article</type><title>A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hertle, Lukas ; Sevim, Semih ; Zhu, Jiawei ; Pustovalov, Vitaly ; Veciana, Andrea ; Llacer‐Wintle, Joaquin ; Landers, Fabian C. ; Ye, Hao ; Chen, Xiang‐Zhong ; Vogler, Hannes ; Grossniklaus, Ueli ; Puigmartí‐Luis, Josep ; Nelson, Bradley J. ; Pané, Salvador</creator><creatorcontrib>Hertle, Lukas ; Sevim, Semih ; Zhu, Jiawei ; Pustovalov, Vitaly ; Veciana, Andrea ; Llacer‐Wintle, Joaquin ; Landers, Fabian C. ; Ye, Hao ; Chen, Xiang‐Zhong ; Vogler, Hannes ; Grossniklaus, Ueli ; Puigmartí‐Luis, Josep ; Nelson, Bradley J. ; Pané, Salvador</creatorcontrib><description>Soft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes to generate multifunctional and compartmentalized calcium‐cross‐linkable alginate‐based microfibers. Under RD conditions, sophisticated alginate‐based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross‐linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll‐up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small‐scale devices.
Here, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes for generating multifunctional and compartmentalized alginate‐based microfibers. This nature‐inspired RD process allows for producing sophisticated fibers acting as magnetic soft continuum robots. The method allows for tailoring the stiffness and magnetic responsiveness of the microfibers via customizing the geometry, degree of cross‐linking, and spatial localization of magnetic nanoparticles.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202402309</identifier><identifier>PMID: 38780003</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alginates ; Automation ; Industrial robots ; magnetic soft continuum robots ; Manufacturing engineering ; Microfibers ; Microfluidics ; Morphing ; multifunctionality ; reaction‐diffusion controlled fabrication ; Robot control ; Robotics ; shape transformation ; tailored magnetic actuation</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2402309-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2989-7aaf6d150da1d79ada6ec222c5ab8e8ce02b2c8502bf05c90019bc04cbc4a6033</cites><orcidid>0000-0003-0147-8287 ; 0000-0002-0522-8974 ; 0000-0003-1461-1606 ; 0000-0001-9070-6987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202402309$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202402309$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38780003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hertle, Lukas</creatorcontrib><creatorcontrib>Sevim, Semih</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Pustovalov, Vitaly</creatorcontrib><creatorcontrib>Veciana, Andrea</creatorcontrib><creatorcontrib>Llacer‐Wintle, Joaquin</creatorcontrib><creatorcontrib>Landers, Fabian C.</creatorcontrib><creatorcontrib>Ye, Hao</creatorcontrib><creatorcontrib>Chen, Xiang‐Zhong</creatorcontrib><creatorcontrib>Vogler, Hannes</creatorcontrib><creatorcontrib>Grossniklaus, Ueli</creatorcontrib><creatorcontrib>Puigmartí‐Luis, Josep</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><title>A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Soft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes to generate multifunctional and compartmentalized calcium‐cross‐linkable alginate‐based microfibers. Under RD conditions, sophisticated alginate‐based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross‐linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll‐up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small‐scale devices.
Here, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes for generating multifunctional and compartmentalized alginate‐based microfibers. This nature‐inspired RD process allows for producing sophisticated fibers acting as magnetic soft continuum robots. The method allows for tailoring the stiffness and magnetic responsiveness of the microfibers via customizing the geometry, degree of cross‐linking, and spatial localization of magnetic nanoparticles.</description><subject>Alginates</subject><subject>Automation</subject><subject>Industrial robots</subject><subject>magnetic soft continuum robots</subject><subject>Manufacturing engineering</subject><subject>Microfibers</subject><subject>Microfluidics</subject><subject>Morphing</subject><subject>multifunctionality</subject><subject>reaction‐diffusion controlled fabrication</subject><subject>Robot control</subject><subject>Robotics</subject><subject>shape transformation</subject><subject>tailored magnetic actuation</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkbFuFDEQhi1ERI5AS4lWoqHZY-xd79nlcgkQKRcKQr2a9XqDI6992GvgOipqnpEnwadLgpSGauSZbz559BPygsKSArA3OEy4ZMBqYBXIR2RBOaNlDZI_JguQFS9lU4tj8jTGGwCQDTRPyHElViK_qgX51RaXOKeA1u6Kcxe3JuihOPsxhxSNd39-_n6LMXc2RgU_2mQGo4p2uw0e1Zdi9KHYoEsjquww7rq4QmN9wN7qPLh2es74Jz_Oxdq72biUpoMq-N7vZ6f6m1E6PiNHI9qon9_WE_L53dnV-kN58fH9-bq9KBWTQpYrxLEZKIcB6bCSOGCjFWNMceyFFkoD65kSPJcRuJIAVPYKatWrGhuoqhPy-uDNB3xNOs7dZKLS1qLTPsWuAi4ZXwHfo68eoDc-BZd_lynRCKgYpZlaHqh8U4xBj902mAnDrqPQ7RPq9gl19wnlhZe32tRPerjH7yLJgDwA343Vu__ouvZ00_6T_wWh5aAr</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hertle, Lukas</creator><creator>Sevim, Semih</creator><creator>Zhu, Jiawei</creator><creator>Pustovalov, Vitaly</creator><creator>Veciana, Andrea</creator><creator>Llacer‐Wintle, Joaquin</creator><creator>Landers, Fabian C.</creator><creator>Ye, Hao</creator><creator>Chen, Xiang‐Zhong</creator><creator>Vogler, Hannes</creator><creator>Grossniklaus, Ueli</creator><creator>Puigmartí‐Luis, Josep</creator><creator>Nelson, Bradley J.</creator><creator>Pané, Salvador</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid><orcidid>https://orcid.org/0000-0002-0522-8974</orcidid><orcidid>https://orcid.org/0000-0003-1461-1606</orcidid><orcidid>https://orcid.org/0000-0001-9070-6987</orcidid></search><sort><creationdate>20240801</creationdate><title>A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices</title><author>Hertle, Lukas ; Sevim, Semih ; Zhu, Jiawei ; Pustovalov, Vitaly ; Veciana, Andrea ; Llacer‐Wintle, Joaquin ; Landers, Fabian C. ; Ye, Hao ; Chen, Xiang‐Zhong ; Vogler, Hannes ; Grossniklaus, Ueli ; Puigmartí‐Luis, Josep ; Nelson, Bradley J. ; Pané, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2989-7aaf6d150da1d79ada6ec222c5ab8e8ce02b2c8502bf05c90019bc04cbc4a6033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alginates</topic><topic>Automation</topic><topic>Industrial robots</topic><topic>magnetic soft continuum robots</topic><topic>Manufacturing engineering</topic><topic>Microfibers</topic><topic>Microfluidics</topic><topic>Morphing</topic><topic>multifunctionality</topic><topic>reaction‐diffusion controlled fabrication</topic><topic>Robot control</topic><topic>Robotics</topic><topic>shape transformation</topic><topic>tailored magnetic actuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hertle, Lukas</creatorcontrib><creatorcontrib>Sevim, Semih</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Pustovalov, Vitaly</creatorcontrib><creatorcontrib>Veciana, Andrea</creatorcontrib><creatorcontrib>Llacer‐Wintle, Joaquin</creatorcontrib><creatorcontrib>Landers, Fabian C.</creatorcontrib><creatorcontrib>Ye, Hao</creatorcontrib><creatorcontrib>Chen, Xiang‐Zhong</creatorcontrib><creatorcontrib>Vogler, Hannes</creatorcontrib><creatorcontrib>Grossniklaus, Ueli</creatorcontrib><creatorcontrib>Puigmartí‐Luis, Josep</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertle, Lukas</au><au>Sevim, Semih</au><au>Zhu, Jiawei</au><au>Pustovalov, Vitaly</au><au>Veciana, Andrea</au><au>Llacer‐Wintle, Joaquin</au><au>Landers, Fabian C.</au><au>Ye, Hao</au><au>Chen, Xiang‐Zhong</au><au>Vogler, Hannes</au><au>Grossniklaus, Ueli</au><au>Puigmartí‐Luis, Josep</au><au>Nelson, Bradley J.</au><au>Pané, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2402309</spage><epage>n/a</epage><pages>e2402309-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Soft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes to generate multifunctional and compartmentalized calcium‐cross‐linkable alginate‐based microfibers. Under RD conditions, sophisticated alginate‐based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross‐linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll‐up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small‐scale devices.
Here, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes for generating multifunctional and compartmentalized alginate‐based microfibers. This nature‐inspired RD process allows for producing sophisticated fibers acting as magnetic soft continuum robots. The method allows for tailoring the stiffness and magnetic responsiveness of the microfibers via customizing the geometry, degree of cross‐linking, and spatial localization of magnetic nanoparticles.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38780003</pmid><doi>10.1002/adma.202402309</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid><orcidid>https://orcid.org/0000-0002-0522-8974</orcidid><orcidid>https://orcid.org/0000-0003-1461-1606</orcidid><orcidid>https://orcid.org/0000-0001-9070-6987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2402309-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3059257053 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alginates Automation Industrial robots magnetic soft continuum robots Manufacturing engineering Microfibers Microfluidics Morphing multifunctionality reaction‐diffusion controlled fabrication Robot control Robotics shape transformation tailored magnetic actuation |
title | A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Naturally%20Inspired%20Extrusion%E2%80%90Based%20Microfluidic%20Approach%20for%20Manufacturing%20Tailorable%20Magnetic%20Soft%20Continuum%20Microrobotic%20Devices&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hertle,%20Lukas&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2402309&rft.epage=n/a&rft.pages=e2402309-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202402309&rft_dat=%3Cproquest_cross%3E3086803211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086803211&rft_id=info:pmid/38780003&rfr_iscdi=true |