Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism
[Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we p...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-09, Vol.670, p.385-394 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | |
container_start_page | 385 |
container_title | Journal of colloid and interface science |
container_volume | 670 |
creator | Zhang, Di Shen, Zhen Li, Dehua Ma, Yingyuan Zhao, Zhiwei Yang, Xiao Xu, Shilin Xiong, Yarui Xu, Jianhong Hu, Yi |
description | [Display omitted]
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs. |
doi_str_mv | 10.1016/j.jcis.2024.05.092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3058635465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724010737</els_id><sourcerecordid>3058635465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</originalsourceid><addsrcrecordid>eNqFkc2OFCEURitG4_SMvoALw3JcVHmBon6MGzNxdJJJdKFrQsFlmg5VtEBN7GfyJaXTrUtdES7n-3LDqapXFBoKtHu7a3bapYYBaxsQDYzsSbWhMIq6p8CfVhsARuuxH_uL6jKlHQClQozPqws-9D1jQmyqX1-DP1xj3h48LkjCT2fwTT2phIboMO9DchlJCt4Zgh51joUvExsi8WF5IPqgPRLv7JmqU1b5OMhbt85kxqw8mVTOGB2md-Ru3sfwiDMumQRL3FIerNIlndXkSuxA8jaG9WFLFDFrCc-ot2pxaX5RPbPKJ3x5Pq-q77cfv918ru-_fLq7-XBfa95Crq1ldjC8XCz2MMDUc2M5bc04CcYngd1IUbMJWq0NsK5vdS-6vkNlkTEY-FV1feotm_5YMWU5u6TRe7VgWJPkVHAxAuXs_yiIoeOi7URB2QnVMaQU0cp9dLOKB0lBHn3KnTz6lEefEoQsPkvo9bl_nWY0fyN_BBbg_QnA8iGPDqNM2uGi0bhYbEkT3L_6fwP-T7WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058635465</pqid></control><display><type>article</type><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</creator><creatorcontrib>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</creatorcontrib><description>[Display omitted]
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.05.092</identifier><identifier>PMID: 38772255</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ambient temperature ; batteries ; electrolytes ; Interface stability ; Ion transport ; lithium ; Long cycle life ; nanoparticles ; PEO-based composite solid electrolyte ; Solid-state lithium metal battery ; succinonitrile ; zinc oxide</subject><ispartof>Journal of colloid and interface science, 2024-09, Vol.670, p.385-394</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.05.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38772255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Li, Dehua</creatorcontrib><creatorcontrib>Ma, Yingyuan</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Xu, Shilin</creatorcontrib><creatorcontrib>Xiong, Yarui</creatorcontrib><creatorcontrib>Xu, Jianhong</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</description><subject>ambient temperature</subject><subject>batteries</subject><subject>electrolytes</subject><subject>Interface stability</subject><subject>Ion transport</subject><subject>lithium</subject><subject>Long cycle life</subject><subject>nanoparticles</subject><subject>PEO-based composite solid electrolyte</subject><subject>Solid-state lithium metal battery</subject><subject>succinonitrile</subject><subject>zinc oxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc2OFCEURitG4_SMvoALw3JcVHmBon6MGzNxdJJJdKFrQsFlmg5VtEBN7GfyJaXTrUtdES7n-3LDqapXFBoKtHu7a3bapYYBaxsQDYzsSbWhMIq6p8CfVhsARuuxH_uL6jKlHQClQozPqws-9D1jQmyqX1-DP1xj3h48LkjCT2fwTT2phIboMO9DchlJCt4Zgh51joUvExsi8WF5IPqgPRLv7JmqU1b5OMhbt85kxqw8mVTOGB2md-Ru3sfwiDMumQRL3FIerNIlndXkSuxA8jaG9WFLFDFrCc-ot2pxaX5RPbPKJ3x5Pq-q77cfv918ru-_fLq7-XBfa95Crq1ldjC8XCz2MMDUc2M5bc04CcYngd1IUbMJWq0NsK5vdS-6vkNlkTEY-FV1feotm_5YMWU5u6TRe7VgWJPkVHAxAuXs_yiIoeOi7URB2QnVMaQU0cp9dLOKB0lBHn3KnTz6lEefEoQsPkvo9bl_nWY0fyN_BBbg_QnA8iGPDqNM2uGi0bhYbEkT3L_6fwP-T7WA</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Zhang, Di</creator><creator>Shen, Zhen</creator><creator>Li, Dehua</creator><creator>Ma, Yingyuan</creator><creator>Zhao, Zhiwei</creator><creator>Yang, Xiao</creator><creator>Xu, Shilin</creator><creator>Xiong, Yarui</creator><creator>Xu, Jianhong</creator><creator>Hu, Yi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240915</creationdate><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><author>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>batteries</topic><topic>electrolytes</topic><topic>Interface stability</topic><topic>Ion transport</topic><topic>lithium</topic><topic>Long cycle life</topic><topic>nanoparticles</topic><topic>PEO-based composite solid electrolyte</topic><topic>Solid-state lithium metal battery</topic><topic>succinonitrile</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Li, Dehua</creatorcontrib><creatorcontrib>Ma, Yingyuan</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Xu, Shilin</creatorcontrib><creatorcontrib>Xiong, Yarui</creatorcontrib><creatorcontrib>Xu, Jianhong</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Shen, Zhen</au><au>Li, Dehua</au><au>Ma, Yingyuan</au><au>Zhao, Zhiwei</au><au>Yang, Xiao</au><au>Xu, Shilin</au><au>Xiong, Yarui</au><au>Xu, Jianhong</au><au>Hu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>670</volume><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38772255</pmid><doi>10.1016/j.jcis.2024.05.092</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-09, Vol.670, p.385-394 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3058635465 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | ambient temperature batteries electrolytes Interface stability Ion transport lithium Long cycle life nanoparticles PEO-based composite solid electrolyte Solid-state lithium metal battery succinonitrile zinc oxide |
title | Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(ethylene%20oxide)-based%20composite%20solid%20electrolyte%20for%20long%20cycle%20life%20solid-state%20lithium%20metal%20batteries:%20Improvement%20of%20interface%20stability%20through%20a%20dual%20mechanism&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Di&rft.date=2024-09-15&rft.volume=670&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.05.092&rft_dat=%3Cproquest_cross%3E3058635465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058635465&rft_id=info:pmid/38772255&rft_els_id=S0021979724010737&rfr_iscdi=true |