Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism

[Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-09, Vol.670, p.385-394
Hauptverfasser: Zhang, Di, Shen, Zhen, Li, Dehua, Ma, Yingyuan, Zhao, Zhiwei, Yang, Xiao, Xu, Shilin, Xiong, Yarui, Xu, Jianhong, Hu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue
container_start_page 385
container_title Journal of colloid and interface science
container_volume 670
creator Zhang, Di
Shen, Zhen
Li, Dehua
Ma, Yingyuan
Zhao, Zhiwei
Yang, Xiao
Xu, Shilin
Xiong, Yarui
Xu, Jianhong
Hu, Yi
description [Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.
doi_str_mv 10.1016/j.jcis.2024.05.092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3058635465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724010737</els_id><sourcerecordid>3058635465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</originalsourceid><addsrcrecordid>eNqFkc2OFCEURitG4_SMvoALw3JcVHmBon6MGzNxdJJJdKFrQsFlmg5VtEBN7GfyJaXTrUtdES7n-3LDqapXFBoKtHu7a3bapYYBaxsQDYzsSbWhMIq6p8CfVhsARuuxH_uL6jKlHQClQozPqws-9D1jQmyqX1-DP1xj3h48LkjCT2fwTT2phIboMO9DchlJCt4Zgh51joUvExsi8WF5IPqgPRLv7JmqU1b5OMhbt85kxqw8mVTOGB2md-Ru3sfwiDMumQRL3FIerNIlndXkSuxA8jaG9WFLFDFrCc-ot2pxaX5RPbPKJ3x5Pq-q77cfv918ru-_fLq7-XBfa95Crq1ldjC8XCz2MMDUc2M5bc04CcYngd1IUbMJWq0NsK5vdS-6vkNlkTEY-FV1feotm_5YMWU5u6TRe7VgWJPkVHAxAuXs_yiIoeOi7URB2QnVMaQU0cp9dLOKB0lBHn3KnTz6lEefEoQsPkvo9bl_nWY0fyN_BBbg_QnA8iGPDqNM2uGi0bhYbEkT3L_6fwP-T7WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058635465</pqid></control><display><type>article</type><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</creator><creatorcontrib>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</creatorcontrib><description>[Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.05.092</identifier><identifier>PMID: 38772255</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ambient temperature ; batteries ; electrolytes ; Interface stability ; Ion transport ; lithium ; Long cycle life ; nanoparticles ; PEO-based composite solid electrolyte ; Solid-state lithium metal battery ; succinonitrile ; zinc oxide</subject><ispartof>Journal of colloid and interface science, 2024-09, Vol.670, p.385-394</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.05.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38772255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Li, Dehua</creatorcontrib><creatorcontrib>Ma, Yingyuan</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Xu, Shilin</creatorcontrib><creatorcontrib>Xiong, Yarui</creatorcontrib><creatorcontrib>Xu, Jianhong</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</description><subject>ambient temperature</subject><subject>batteries</subject><subject>electrolytes</subject><subject>Interface stability</subject><subject>Ion transport</subject><subject>lithium</subject><subject>Long cycle life</subject><subject>nanoparticles</subject><subject>PEO-based composite solid electrolyte</subject><subject>Solid-state lithium metal battery</subject><subject>succinonitrile</subject><subject>zinc oxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc2OFCEURitG4_SMvoALw3JcVHmBon6MGzNxdJJJdKFrQsFlmg5VtEBN7GfyJaXTrUtdES7n-3LDqapXFBoKtHu7a3bapYYBaxsQDYzsSbWhMIq6p8CfVhsARuuxH_uL6jKlHQClQozPqws-9D1jQmyqX1-DP1xj3h48LkjCT2fwTT2phIboMO9DchlJCt4Zgh51joUvExsi8WF5IPqgPRLv7JmqU1b5OMhbt85kxqw8mVTOGB2md-Ru3sfwiDMumQRL3FIerNIlndXkSuxA8jaG9WFLFDFrCc-ot2pxaX5RPbPKJ3x5Pq-q77cfv918ru-_fLq7-XBfa95Crq1ldjC8XCz2MMDUc2M5bc04CcYngd1IUbMJWq0NsK5vdS-6vkNlkTEY-FV1feotm_5YMWU5u6TRe7VgWJPkVHAxAuXs_yiIoeOi7URB2QnVMaQU0cp9dLOKB0lBHn3KnTz6lEefEoQsPkvo9bl_nWY0fyN_BBbg_QnA8iGPDqNM2uGi0bhYbEkT3L_6fwP-T7WA</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Zhang, Di</creator><creator>Shen, Zhen</creator><creator>Li, Dehua</creator><creator>Ma, Yingyuan</creator><creator>Zhao, Zhiwei</creator><creator>Yang, Xiao</creator><creator>Xu, Shilin</creator><creator>Xiong, Yarui</creator><creator>Xu, Jianhong</creator><creator>Hu, Yi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240915</creationdate><title>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</title><author>Zhang, Di ; Shen, Zhen ; Li, Dehua ; Ma, Yingyuan ; Zhao, Zhiwei ; Yang, Xiao ; Xu, Shilin ; Xiong, Yarui ; Xu, Jianhong ; Hu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ff2f8d3c34fe7080b73df314d9b523b5e691ec2b04ccd02674c75676eafe22083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>batteries</topic><topic>electrolytes</topic><topic>Interface stability</topic><topic>Ion transport</topic><topic>lithium</topic><topic>Long cycle life</topic><topic>nanoparticles</topic><topic>PEO-based composite solid electrolyte</topic><topic>Solid-state lithium metal battery</topic><topic>succinonitrile</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Li, Dehua</creatorcontrib><creatorcontrib>Ma, Yingyuan</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Xu, Shilin</creatorcontrib><creatorcontrib>Xiong, Yarui</creatorcontrib><creatorcontrib>Xu, Jianhong</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Shen, Zhen</au><au>Li, Dehua</au><au>Ma, Yingyuan</au><au>Zhao, Zhiwei</au><au>Yang, Xiao</au><au>Xu, Shilin</au><au>Xiong, Yarui</au><au>Xu, Jianhong</au><au>Hu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>670</volume><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel–symmetrical battery reaches 1.1 × 10−4 S cm−1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38772255</pmid><doi>10.1016/j.jcis.2024.05.092</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-09, Vol.670, p.385-394
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3058635465
source ScienceDirect Journals (5 years ago - present)
subjects ambient temperature
batteries
electrolytes
Interface stability
Ion transport
lithium
Long cycle life
nanoparticles
PEO-based composite solid electrolyte
Solid-state lithium metal battery
succinonitrile
zinc oxide
title Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(ethylene%20oxide)-based%20composite%20solid%20electrolyte%20for%20long%20cycle%20life%20solid-state%20lithium%20metal%20batteries:%20Improvement%20of%20interface%20stability%20through%20a%20dual%20mechanism&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Di&rft.date=2024-09-15&rft.volume=670&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.05.092&rft_dat=%3Cproquest_cross%3E3058635465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058635465&rft_id=info:pmid/38772255&rft_els_id=S0021979724010737&rfr_iscdi=true