In Situ MOF‐74‐Pyrolysis‐Generated Porous Carbon Supporting Spinel Cu0.15Co2.85O4/C Boosts Ammonium Perchlorate Accelerating Decomposition: Precise Cu Doping Modulating Oxygen Vacancy Concentration

As one of the main components of solid propellant, ammonium perchlorate (AP) shows slow sluggish decomposition kinetics with unconcentrated heat release. To achieve efficient catalytical decomposition, it is a significant challenge to design reasonable catalyst structure and explore the interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2400712-n/a
Hauptverfasser: Wei, Shilong, Zhang, Yifan, Tan, Haojie, Xia, Zhengqiang, Zhai, Lianjie, Hu, Jun, Yang, Qi, Xie, Gang, Chen, Zhong, Chen, Sanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the main components of solid propellant, ammonium perchlorate (AP) shows slow sluggish decomposition kinetics with unconcentrated heat release. To achieve efficient catalytical decomposition, it is a significant challenge to design reasonable catalyst structure and explore the interaction between catalyst and AP. Herein, a series of porous carbon supported spinel‐typed homogeneous heterometallic composites CuxCo3−xO4/C via pyrolysis of MOF‐74‐Co doped Cu. On basis of precise electronic‐structure‐tuning through modulating Cu/Co ratio in MOF‐74, Cu0.15Co2.85O4/C with 5% Cu‐doping featuring oxygen vacancy concentration of 26.25% exhibits the decrease to 261.5 °C with heat release up to 1222.1 J g−1 (456.9 °C and 669.2 J g−1 for pure AP). The detail process of AP accelerated decomposition is approved by TG‐DSC‐FTIR‐MS technique. Density functional theory calculation revealed that in the Cu0.15Co2.85O4/C, the distinctive ability for NH3 catalyzed oxidation assisted with absorption performance of active porous C boosts accelerating AP decomposition. The findings would provide an insight for perceiving and understanding AP catalytic decomposition. Porous carbon‐supported spinel homogeneous metal composites Cu0.15Co2.85O4/C with precise electronic structure is prepared by pyrolyzing Cu‐doped MOF‐74‐Co with 5% Cu doping in MOF‐74. In Cu0.15Co2.85O4/C, the catalytic oxidation capacity of NH3 of spinel with oxygen vacancies and the adsorption capacity of active porous carbon promote the accelerated decomposition of AP.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202400712