Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics
Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2024-08, Vol.67 (16), p.13813-13828 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13828 |
---|---|
container_issue | 16 |
container_start_page | 13813 |
container_title | Journal of medicinal chemistry |
container_volume | 67 |
creator | Nemli, Dilara D. Jiang, Xiaohua Jakob, Roman P. Gloder, Laura Muñoz Schwardt, Oliver Rabbani, Said Maier, Timm Ernst, Beat Cramer, Jonathan |
description | Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN. |
doi_str_mv | 10.1021/acs.jmedchem.4c00623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057693381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057693381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EouXxBwhlySZlxk7qZAkttEgIJB7ryLEnJaiJi51U6t9jaMuSlaXxuXc0h7ELhBECx2ul_eizIaM_qBklGmDMxQEbYsohTjJIDtkQgPOYh_mAnXj_CQACuThmA5FJiShwyMq3D3KNNZtWNbX28ayvDZloSr5etNELrUktfaSiibUrcqqr1xTNN8bZBbXRrW1NVLfRdBK_Psye4k65BXUhPltutG3qhrrQecaOqlBC57v3lL3f371N5vHj8-xhcvMYK57LLjYVCpA6kzlHEEJWY5UaQCjTBHOpE5OXiJBAJVTJMR1nIpdSZXmeGFFSacQpu9r2rpz96sl3RVN7Tculasn2vhCQynEuRIYBTbaodtZ7R1WxcnWj3KZAKH7sFsFusbdb7OyG2OVuQ1-Gv7_QXmcAYAv8xm3v2nDw_53fkEuIbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057693381</pqid></control><display><type>article</type><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</creator><creatorcontrib>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</creatorcontrib><description>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</description><identifier>ISSN: 0022-2623</identifier><identifier>ISSN: 1520-4804</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.4c00623</identifier><identifier>PMID: 38771131</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Cell Adhesion Molecules - chemistry ; Cell Adhesion Molecules - metabolism ; Drug Design ; Humans ; Hydrogen Bonding ; Lectins, C-Type - chemistry ; Lectins, C-Type - metabolism ; Ligands ; Mannose - chemistry ; Mannose - metabolism ; Models, Molecular ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - metabolism ; Thermodynamics</subject><ispartof>Journal of medicinal chemistry, 2024-08, Vol.67 (16), p.13813-13828</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</cites><orcidid>0000-0001-5787-2297 ; 0000-0001-9869-5645 ; 0000-0002-7459-1363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.4c00623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38771131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemli, Dilara D.</creatorcontrib><creatorcontrib>Jiang, Xiaohua</creatorcontrib><creatorcontrib>Jakob, Roman P.</creatorcontrib><creatorcontrib>Gloder, Laura Muñoz</creatorcontrib><creatorcontrib>Schwardt, Oliver</creatorcontrib><creatorcontrib>Rabbani, Said</creatorcontrib><creatorcontrib>Maier, Timm</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Cramer, Jonathan</creatorcontrib><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</description><subject>Binding Sites</subject><subject>Cell Adhesion Molecules - chemistry</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Lectins, C-Type - chemistry</subject><subject>Lectins, C-Type - metabolism</subject><subject>Ligands</subject><subject>Mannose - chemistry</subject><subject>Mannose - metabolism</subject><subject>Models, Molecular</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Thermodynamics</subject><issn>0022-2623</issn><issn>1520-4804</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EouXxBwhlySZlxk7qZAkttEgIJB7ryLEnJaiJi51U6t9jaMuSlaXxuXc0h7ELhBECx2ul_eizIaM_qBklGmDMxQEbYsohTjJIDtkQgPOYh_mAnXj_CQACuThmA5FJiShwyMq3D3KNNZtWNbX28ayvDZloSr5etNELrUktfaSiibUrcqqr1xTNN8bZBbXRrW1NVLfRdBK_Psye4k65BXUhPltutG3qhrrQecaOqlBC57v3lL3f371N5vHj8-xhcvMYK57LLjYVCpA6kzlHEEJWY5UaQCjTBHOpE5OXiJBAJVTJMR1nIpdSZXmeGFFSacQpu9r2rpz96sl3RVN7Tculasn2vhCQynEuRIYBTbaodtZ7R1WxcnWj3KZAKH7sFsFusbdb7OyG2OVuQ1-Gv7_QXmcAYAv8xm3v2nDw_53fkEuIbg</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Nemli, Dilara D.</creator><creator>Jiang, Xiaohua</creator><creator>Jakob, Roman P.</creator><creator>Gloder, Laura Muñoz</creator><creator>Schwardt, Oliver</creator><creator>Rabbani, Said</creator><creator>Maier, Timm</creator><creator>Ernst, Beat</creator><creator>Cramer, Jonathan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0001-9869-5645</orcidid><orcidid>https://orcid.org/0000-0002-7459-1363</orcidid></search><sort><creationdate>20240822</creationdate><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><author>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding Sites</topic><topic>Cell Adhesion Molecules - chemistry</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Lectins, C-Type - chemistry</topic><topic>Lectins, C-Type - metabolism</topic><topic>Ligands</topic><topic>Mannose - chemistry</topic><topic>Mannose - metabolism</topic><topic>Models, Molecular</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemli, Dilara D.</creatorcontrib><creatorcontrib>Jiang, Xiaohua</creatorcontrib><creatorcontrib>Jakob, Roman P.</creatorcontrib><creatorcontrib>Gloder, Laura Muñoz</creatorcontrib><creatorcontrib>Schwardt, Oliver</creatorcontrib><creatorcontrib>Rabbani, Said</creatorcontrib><creatorcontrib>Maier, Timm</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Cramer, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemli, Dilara D.</au><au>Jiang, Xiaohua</au><au>Jakob, Roman P.</au><au>Gloder, Laura Muñoz</au><au>Schwardt, Oliver</au><au>Rabbani, Said</au><au>Maier, Timm</au><au>Ernst, Beat</au><au>Cramer, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>67</volume><issue>16</issue><spage>13813</spage><epage>13828</epage><pages>13813-13828</pages><issn>0022-2623</issn><issn>1520-4804</issn><eissn>1520-4804</eissn><abstract>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38771131</pmid><doi>10.1021/acs.jmedchem.4c00623</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0001-9869-5645</orcidid><orcidid>https://orcid.org/0000-0002-7459-1363</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2024-08, Vol.67 (16), p.13813-13828 |
issn | 0022-2623 1520-4804 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057693381 |
source | MEDLINE; ACS Publications |
subjects | Binding Sites Cell Adhesion Molecules - chemistry Cell Adhesion Molecules - metabolism Drug Design Humans Hydrogen Bonding Lectins, C-Type - chemistry Lectins, C-Type - metabolism Ligands Mannose - chemistry Mannose - metabolism Models, Molecular Receptors, Cell Surface - chemistry Receptors, Cell Surface - metabolism Thermodynamics |
title | Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics-Guided%20Design%20Reveals%20a%20Cooperative%20Hydrogen%20Bond%20in%20DC-SIGN-targeted%20Glycomimetics&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Nemli,%20Dilara%20D.&rft.date=2024-08-22&rft.volume=67&rft.issue=16&rft.spage=13813&rft.epage=13828&rft.pages=13813-13828&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.4c00623&rft_dat=%3Cproquest_cross%3E3057693381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057693381&rft_id=info:pmid/38771131&rfr_iscdi=true |