Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics

Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2024-08, Vol.67 (16), p.13813-13828
Hauptverfasser: Nemli, Dilara D., Jiang, Xiaohua, Jakob, Roman P., Gloder, Laura Muñoz, Schwardt, Oliver, Rabbani, Said, Maier, Timm, Ernst, Beat, Cramer, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13828
container_issue 16
container_start_page 13813
container_title Journal of medicinal chemistry
container_volume 67
creator Nemli, Dilara D.
Jiang, Xiaohua
Jakob, Roman P.
Gloder, Laura Muñoz
Schwardt, Oliver
Rabbani, Said
Maier, Timm
Ernst, Beat
Cramer, Jonathan
description Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.
doi_str_mv 10.1021/acs.jmedchem.4c00623
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057693381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057693381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EouXxBwhlySZlxk7qZAkttEgIJB7ryLEnJaiJi51U6t9jaMuSlaXxuXc0h7ELhBECx2ul_eizIaM_qBklGmDMxQEbYsohTjJIDtkQgPOYh_mAnXj_CQACuThmA5FJiShwyMq3D3KNNZtWNbX28ayvDZloSr5etNELrUktfaSiibUrcqqr1xTNN8bZBbXRrW1NVLfRdBK_Psye4k65BXUhPltutG3qhrrQecaOqlBC57v3lL3f371N5vHj8-xhcvMYK57LLjYVCpA6kzlHEEJWY5UaQCjTBHOpE5OXiJBAJVTJMR1nIpdSZXmeGFFSacQpu9r2rpz96sl3RVN7Tculasn2vhCQynEuRIYBTbaodtZ7R1WxcnWj3KZAKH7sFsFusbdb7OyG2OVuQ1-Gv7_QXmcAYAv8xm3v2nDw_53fkEuIbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057693381</pqid></control><display><type>article</type><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</creator><creatorcontrib>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</creatorcontrib><description>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</description><identifier>ISSN: 0022-2623</identifier><identifier>ISSN: 1520-4804</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.4c00623</identifier><identifier>PMID: 38771131</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Cell Adhesion Molecules - chemistry ; Cell Adhesion Molecules - metabolism ; Drug Design ; Humans ; Hydrogen Bonding ; Lectins, C-Type - chemistry ; Lectins, C-Type - metabolism ; Ligands ; Mannose - chemistry ; Mannose - metabolism ; Models, Molecular ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - metabolism ; Thermodynamics</subject><ispartof>Journal of medicinal chemistry, 2024-08, Vol.67 (16), p.13813-13828</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</cites><orcidid>0000-0001-5787-2297 ; 0000-0001-9869-5645 ; 0000-0002-7459-1363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.4c00623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.4c00623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38771131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemli, Dilara D.</creatorcontrib><creatorcontrib>Jiang, Xiaohua</creatorcontrib><creatorcontrib>Jakob, Roman P.</creatorcontrib><creatorcontrib>Gloder, Laura Muñoz</creatorcontrib><creatorcontrib>Schwardt, Oliver</creatorcontrib><creatorcontrib>Rabbani, Said</creatorcontrib><creatorcontrib>Maier, Timm</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Cramer, Jonathan</creatorcontrib><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</description><subject>Binding Sites</subject><subject>Cell Adhesion Molecules - chemistry</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Lectins, C-Type - chemistry</subject><subject>Lectins, C-Type - metabolism</subject><subject>Ligands</subject><subject>Mannose - chemistry</subject><subject>Mannose - metabolism</subject><subject>Models, Molecular</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Thermodynamics</subject><issn>0022-2623</issn><issn>1520-4804</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EouXxBwhlySZlxk7qZAkttEgIJB7ryLEnJaiJi51U6t9jaMuSlaXxuXc0h7ELhBECx2ul_eizIaM_qBklGmDMxQEbYsohTjJIDtkQgPOYh_mAnXj_CQACuThmA5FJiShwyMq3D3KNNZtWNbX28ayvDZloSr5etNELrUktfaSiibUrcqqr1xTNN8bZBbXRrW1NVLfRdBK_Psye4k65BXUhPltutG3qhrrQecaOqlBC57v3lL3f371N5vHj8-xhcvMYK57LLjYVCpA6kzlHEEJWY5UaQCjTBHOpE5OXiJBAJVTJMR1nIpdSZXmeGFFSacQpu9r2rpz96sl3RVN7Tculasn2vhCQynEuRIYBTbaodtZ7R1WxcnWj3KZAKH7sFsFusbdb7OyG2OVuQ1-Gv7_QXmcAYAv8xm3v2nDw_53fkEuIbg</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Nemli, Dilara D.</creator><creator>Jiang, Xiaohua</creator><creator>Jakob, Roman P.</creator><creator>Gloder, Laura Muñoz</creator><creator>Schwardt, Oliver</creator><creator>Rabbani, Said</creator><creator>Maier, Timm</creator><creator>Ernst, Beat</creator><creator>Cramer, Jonathan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0001-9869-5645</orcidid><orcidid>https://orcid.org/0000-0002-7459-1363</orcidid></search><sort><creationdate>20240822</creationdate><title>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</title><author>Nemli, Dilara D. ; Jiang, Xiaohua ; Jakob, Roman P. ; Gloder, Laura Muñoz ; Schwardt, Oliver ; Rabbani, Said ; Maier, Timm ; Ernst, Beat ; Cramer, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-df1307c879210337f6a5d010b54197c4d9b11040f3ab215683977a8994d3bebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding Sites</topic><topic>Cell Adhesion Molecules - chemistry</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Lectins, C-Type - chemistry</topic><topic>Lectins, C-Type - metabolism</topic><topic>Ligands</topic><topic>Mannose - chemistry</topic><topic>Mannose - metabolism</topic><topic>Models, Molecular</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemli, Dilara D.</creatorcontrib><creatorcontrib>Jiang, Xiaohua</creatorcontrib><creatorcontrib>Jakob, Roman P.</creatorcontrib><creatorcontrib>Gloder, Laura Muñoz</creatorcontrib><creatorcontrib>Schwardt, Oliver</creatorcontrib><creatorcontrib>Rabbani, Said</creatorcontrib><creatorcontrib>Maier, Timm</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Cramer, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemli, Dilara D.</au><au>Jiang, Xiaohua</au><au>Jakob, Roman P.</au><au>Gloder, Laura Muñoz</au><au>Schwardt, Oliver</au><au>Rabbani, Said</au><au>Maier, Timm</au><au>Ernst, Beat</au><au>Cramer, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>67</volume><issue>16</issue><spage>13813</spage><epage>13828</epage><pages>13813-13828</pages><issn>0022-2623</issn><issn>1520-4804</issn><eissn>1520-4804</eissn><abstract>Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38771131</pmid><doi>10.1021/acs.jmedchem.4c00623</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0001-9869-5645</orcidid><orcidid>https://orcid.org/0000-0002-7459-1363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2024-08, Vol.67 (16), p.13813-13828
issn 0022-2623
1520-4804
1520-4804
language eng
recordid cdi_proquest_miscellaneous_3057693381
source MEDLINE; ACS Publications
subjects Binding Sites
Cell Adhesion Molecules - chemistry
Cell Adhesion Molecules - metabolism
Drug Design
Humans
Hydrogen Bonding
Lectins, C-Type - chemistry
Lectins, C-Type - metabolism
Ligands
Mannose - chemistry
Mannose - metabolism
Models, Molecular
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - metabolism
Thermodynamics
title Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics-Guided%20Design%20Reveals%20a%20Cooperative%20Hydrogen%20Bond%20in%20DC-SIGN-targeted%20Glycomimetics&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Nemli,%20Dilara%20D.&rft.date=2024-08-22&rft.volume=67&rft.issue=16&rft.spage=13813&rft.epage=13828&rft.pages=13813-13828&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.4c00623&rft_dat=%3Cproquest_cross%3E3057693381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057693381&rft_id=info:pmid/38771131&rfr_iscdi=true