Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint i...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2024-09, Vol.19 (9), p.2540-2570 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2570 |
---|---|
container_issue | 9 |
container_start_page | 2540 |
container_title | Nature protocols |
container_volume | 19 |
creator | Gujar, Shashi Pol, Jonathan G. Kumar, Vishnupriyan Lizarralde-Guerrero, Manuela Konda, Prathyusha Kroemer, Guido Bell, John C. |
description | Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
This tutorial provides guidelines on oncolytic virus design, production and testing in cancer immunotherapy. Best practice recommendations for preclinical and clinical use of oncolytic viruses as an immunotherapy tool and related future challenges are also considered. |
doi_str_mv | 10.1038/s41596-024-00985-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057692312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101378118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ce5fe24b0c3de433f26b6300eedb9c1ceea18eb218921de465bf99d366cd16253</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3l_AhQTcuLCak7Rp404GbyC4UbehTU_HSJuMSSvM2xsdL-DCVQL5zp__fIQcADsFJqqzmEOhZMZ4njGmqiKDNbINZcEyXiq1_nnPMw6V2iI7Mb4wlpdClptkS1SlVJAX2-TpYRp9sHV_TluMdu5O6CL4djKj9Y7WrqUjxtG6OfUd9c74fjlaQ99smCJG2vlATe0MBmqHYXJ-fMZQL5Z7ZKOr-4j7X-cueby6fJjdZHf317ezi7vMCC7HzGDRIc8bZkSLuRAdl40UjCG2jTJgEGuosPlYgUMiZNF0SrVCStOC5IXYJcer3FT6dUpN9WCjwb6vHfopasGKtCkXwBN69Ad98VNwqZ0WwECUFUCVKL6iTPAxBuz0ItihDksNTH9Y1yvrOlnXn9Y1pKHDr-ipGbD9GfnWnACxAmJ6cnMMv3__E_sO9TmOGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101378118</pqid></control><display><type>article</type><title>Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gujar, Shashi ; Pol, Jonathan G. ; Kumar, Vishnupriyan ; Lizarralde-Guerrero, Manuela ; Konda, Prathyusha ; Kroemer, Guido ; Bell, John C.</creator><creatorcontrib>Gujar, Shashi ; Pol, Jonathan G. ; Kumar, Vishnupriyan ; Lizarralde-Guerrero, Manuela ; Konda, Prathyusha ; Kroemer, Guido ; Bell, John C.</creatorcontrib><description>Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
This tutorial provides guidelines on oncolytic virus design, production and testing in cancer immunotherapy. Best practice recommendations for preclinical and clinical use of oncolytic viruses as an immunotherapy tool and related future challenges are also considered.</description><identifier>ISSN: 1754-2189</identifier><identifier>ISSN: 1750-2799</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-024-00985-1</identifier><identifier>PMID: 38769145</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1059/2325 ; 692/308/153 ; Analytical Chemistry ; Animals ; Best practice ; Biological Techniques ; Biomedical and Life Sciences ; Cancer ; Cancer immunotherapy ; Computational Biology/Bioinformatics ; Design ; Genetic engineering ; Guidelines ; Humans ; Immune checkpoint inhibitors ; Immunotherapy ; Immunotherapy - methods ; In vivo methods and tests ; Life Sciences ; Malignancy ; Mice ; Microarrays ; Neoplasms - immunology ; Neoplasms - therapy ; Oncolysis ; Oncolytic Virotherapy - methods ; Oncolytic Viruses - genetics ; Oncolytic Viruses - immunology ; Organic Chemistry ; Permissivity ; Review Article ; Viruses ; Xenotransplantation</subject><ispartof>Nature protocols, 2024-09, Vol.19 (9), p.2540-2570</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-ce5fe24b0c3de433f26b6300eedb9c1ceea18eb218921de465bf99d366cd16253</cites><orcidid>0009-0004-0737-0941 ; 0000-0002-9334-4405 ; 0000-0002-6861-4442 ; 0000-0002-1800-243X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38769145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gujar, Shashi</creatorcontrib><creatorcontrib>Pol, Jonathan G.</creatorcontrib><creatorcontrib>Kumar, Vishnupriyan</creatorcontrib><creatorcontrib>Lizarralde-Guerrero, Manuela</creatorcontrib><creatorcontrib>Konda, Prathyusha</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>Bell, John C.</creatorcontrib><title>Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
This tutorial provides guidelines on oncolytic virus design, production and testing in cancer immunotherapy. Best practice recommendations for preclinical and clinical use of oncolytic viruses as an immunotherapy tool and related future challenges are also considered.</description><subject>631/67/1059/2325</subject><subject>692/308/153</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Best practice</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Computational Biology/Bioinformatics</subject><subject>Design</subject><subject>Genetic engineering</subject><subject>Guidelines</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Microarrays</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>Oncolysis</subject><subject>Oncolytic Virotherapy - methods</subject><subject>Oncolytic Viruses - genetics</subject><subject>Oncolytic Viruses - immunology</subject><subject>Organic Chemistry</subject><subject>Permissivity</subject><subject>Review Article</subject><subject>Viruses</subject><subject>Xenotransplantation</subject><issn>1754-2189</issn><issn>1750-2799</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMo3l_AhQTcuLCak7Rp404GbyC4UbehTU_HSJuMSSvM2xsdL-DCVQL5zp__fIQcADsFJqqzmEOhZMZ4njGmqiKDNbINZcEyXiq1_nnPMw6V2iI7Mb4wlpdClptkS1SlVJAX2-TpYRp9sHV_TluMdu5O6CL4djKj9Y7WrqUjxtG6OfUd9c74fjlaQ99smCJG2vlATe0MBmqHYXJ-fMZQL5Z7ZKOr-4j7X-cueby6fJjdZHf317ezi7vMCC7HzGDRIc8bZkSLuRAdl40UjCG2jTJgEGuosPlYgUMiZNF0SrVCStOC5IXYJcer3FT6dUpN9WCjwb6vHfopasGKtCkXwBN69Ad98VNwqZ0WwECUFUCVKL6iTPAxBuz0ItihDksNTH9Y1yvrOlnXn9Y1pKHDr-ipGbD9GfnWnACxAmJ6cnMMv3__E_sO9TmOGg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Gujar, Shashi</creator><creator>Pol, Jonathan G.</creator><creator>Kumar, Vishnupriyan</creator><creator>Lizarralde-Guerrero, Manuela</creator><creator>Konda, Prathyusha</creator><creator>Kroemer, Guido</creator><creator>Bell, John C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-0737-0941</orcidid><orcidid>https://orcid.org/0000-0002-9334-4405</orcidid><orcidid>https://orcid.org/0000-0002-6861-4442</orcidid><orcidid>https://orcid.org/0000-0002-1800-243X</orcidid></search><sort><creationdate>202409</creationdate><title>Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy</title><author>Gujar, Shashi ; Pol, Jonathan G. ; Kumar, Vishnupriyan ; Lizarralde-Guerrero, Manuela ; Konda, Prathyusha ; Kroemer, Guido ; Bell, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ce5fe24b0c3de433f26b6300eedb9c1ceea18eb218921de465bf99d366cd16253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/67/1059/2325</topic><topic>692/308/153</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Best practice</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Computational Biology/Bioinformatics</topic><topic>Design</topic><topic>Genetic engineering</topic><topic>Guidelines</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Microarrays</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>Oncolysis</topic><topic>Oncolytic Virotherapy - methods</topic><topic>Oncolytic Viruses - genetics</topic><topic>Oncolytic Viruses - immunology</topic><topic>Organic Chemistry</topic><topic>Permissivity</topic><topic>Review Article</topic><topic>Viruses</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gujar, Shashi</creatorcontrib><creatorcontrib>Pol, Jonathan G.</creatorcontrib><creatorcontrib>Kumar, Vishnupriyan</creatorcontrib><creatorcontrib>Lizarralde-Guerrero, Manuela</creatorcontrib><creatorcontrib>Konda, Prathyusha</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>Bell, John C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gujar, Shashi</au><au>Pol, Jonathan G.</au><au>Kumar, Vishnupriyan</au><au>Lizarralde-Guerrero, Manuela</au><au>Konda, Prathyusha</au><au>Kroemer, Guido</au><au>Bell, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2024-09</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>2540</spage><epage>2570</epage><pages>2540-2570</pages><issn>1754-2189</issn><issn>1750-2799</issn><eissn>1750-2799</eissn><abstract>Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
This tutorial provides guidelines on oncolytic virus design, production and testing in cancer immunotherapy. Best practice recommendations for preclinical and clinical use of oncolytic viruses as an immunotherapy tool and related future challenges are also considered.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38769145</pmid><doi>10.1038/s41596-024-00985-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0009-0004-0737-0941</orcidid><orcidid>https://orcid.org/0000-0002-9334-4405</orcidid><orcidid>https://orcid.org/0000-0002-6861-4442</orcidid><orcidid>https://orcid.org/0000-0002-1800-243X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2024-09, Vol.19 (9), p.2540-2570 |
issn | 1754-2189 1750-2799 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057692312 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/67/1059/2325 692/308/153 Analytical Chemistry Animals Best practice Biological Techniques Biomedical and Life Sciences Cancer Cancer immunotherapy Computational Biology/Bioinformatics Design Genetic engineering Guidelines Humans Immune checkpoint inhibitors Immunotherapy Immunotherapy - methods In vivo methods and tests Life Sciences Malignancy Mice Microarrays Neoplasms - immunology Neoplasms - therapy Oncolysis Oncolytic Virotherapy - methods Oncolytic Viruses - genetics Oncolytic Viruses - immunology Organic Chemistry Permissivity Review Article Viruses Xenotransplantation |
title | Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial:%20design,%20production%20and%20testing%20of%20oncolytic%20viruses%20for%20cancer%20immunotherapy&rft.jtitle=Nature%20protocols&rft.au=Gujar,%20Shashi&rft.date=2024-09&rft.volume=19&rft.issue=9&rft.spage=2540&rft.epage=2570&rft.pages=2540-2570&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-024-00985-1&rft_dat=%3Cproquest_cross%3E3101378118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101378118&rft_id=info:pmid/38769145&rfr_iscdi=true |