Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection
Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI can...
Gespeichert in:
Veröffentlicht in: | Health information science and systems 2024-05, Vol.12 (1), p.35, Article 35 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Health information science and systems |
container_volume | 12 |
creator | Alshardan, Amal Saeed, Muhammad Kashif Alotaibi, Shoayee Dlaim Alashjaee, Abdullah M. Salih, Nahla Marzouk, Radwa |
description | Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI cancer. CT scans, endoscopy, MRI, ultrasound, and positron emission tomography (PET) scans can help detect lesions, abnormal masses, and changes in tissue structure. Artificial intelligence (AI) and machine learning (ML) methods are being gradually applied to medical imaging for cancer diagnosis. ML algorithms, including deep learning methodologies like convolutional neural network (CNN), are applied frequently for cancer diagnosis. These models learn features and patterns from labelled datasets to discriminate between normal and abnormal areas in medical images. This article presents a new Harbor Seal Whiskers Optimization Algorithm with Deep Learning based Medical Imaging Analysis for Gastrointestinal Cancer Detection (HSWOA-DLGCD) technique. The goal of the HSWOA-DLGCD algorithm is to explore the GI images for the cancer diagnosis. In order to accomplish this, the HSWOA-DLGCD system applies bilateral filtering (BF) approach for the removal of noise. In addition, the HSWOA-DLGCD technique makes use of HSWOA with Xception model for feature extraction. For cancer recognition, the HSWOA-DLGCD technique applies extreme gradient boosting (XGBoost) model. Finally, the parameters compared with the XGBoost system can be selected by moth flame optimization (MFO) system. The experimental results of the HSWOA-DLGCD technique could be verified on the Kvasir database. The simulation outcome demonstrated a best possible solution of the HSWOA-DLGCD method than other recent methods. |
doi_str_mv | 10.1007/s13755-024-00294-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057075775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A794013146</galeid><sourcerecordid>A794013146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2082c8f132d4b5bf9d27d4116d9e198eb33568a76e919120e87477e5ff9d2bbf3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7gwJG7cTOVjGIZl06ht0sSNrgnDnJlSZ-AK3DTt1j_uub21VWOEBMjhOS_n8BLymrMTzph-X7jUSjVMtA1jwrSNfkYOBWt1IxTjz387H5DjUq4ZDsOFVPwlOZC97lrVmUPy49zlIWVawC305iqUb5ALTZsa1nDnakiRumVOOdSrld7gSkeADV3A5Rji3AyuwEhXGINHgbC6GaPURbfcllDohNKzKzWnECuUGvCCehc9ZBSq4HcvvCIvJrcUOH7Yj8jXjx--nJ03l58_XZydXjZeGlkbwXrh-4lLMbaDGiYzCj22nHejAW56GKRUXe90B4Zjpwx63WoNatqRwzDJI_Jur7vJ6fsWq7FrKB6WxUVI22IlU5pppbVC9O1f6HXaZiz-nlJC9ZL1T9TsFrAhTqlm53ei9lSblnHJ2w6pk39QOEdYg08RpoDxPxLEPsHnVEqGyW4y_my-tZzZnfl2b75F8-29-VZj0puHircD2vGY8stqBOQeKHgVZ8hPLf1H9id-67pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055258308</pqid></control><display><type>article</type><title>Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alshardan, Amal ; Saeed, Muhammad Kashif ; Alotaibi, Shoayee Dlaim ; Alashjaee, Abdullah M. ; Salih, Nahla ; Marzouk, Radwa</creator><creatorcontrib>Alshardan, Amal ; Saeed, Muhammad Kashif ; Alotaibi, Shoayee Dlaim ; Alashjaee, Abdullah M. ; Salih, Nahla ; Marzouk, Radwa</creatorcontrib><description>Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI cancer. CT scans, endoscopy, MRI, ultrasound, and positron emission tomography (PET) scans can help detect lesions, abnormal masses, and changes in tissue structure. Artificial intelligence (AI) and machine learning (ML) methods are being gradually applied to medical imaging for cancer diagnosis. ML algorithms, including deep learning methodologies like convolutional neural network (CNN), are applied frequently for cancer diagnosis. These models learn features and patterns from labelled datasets to discriminate between normal and abnormal areas in medical images. This article presents a new Harbor Seal Whiskers Optimization Algorithm with Deep Learning based Medical Imaging Analysis for Gastrointestinal Cancer Detection (HSWOA-DLGCD) technique. The goal of the HSWOA-DLGCD algorithm is to explore the GI images for the cancer diagnosis. In order to accomplish this, the HSWOA-DLGCD system applies bilateral filtering (BF) approach for the removal of noise. In addition, the HSWOA-DLGCD technique makes use of HSWOA with Xception model for feature extraction. For cancer recognition, the HSWOA-DLGCD technique applies extreme gradient boosting (XGBoost) model. Finally, the parameters compared with the XGBoost system can be selected by moth flame optimization (MFO) system. The experimental results of the HSWOA-DLGCD technique could be verified on the Kvasir database. The simulation outcome demonstrated a best possible solution of the HSWOA-DLGCD method than other recent methods.</description><identifier>ISSN: 2047-2501</identifier><identifier>EISSN: 2047-2501</identifier><identifier>DOI: 10.1007/s13755-024-00294-7</identifier><identifier>PMID: 38764569</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Bioinformatics ; Cancer ; Care and treatment ; Computational Biology/Bioinformatics ; Computed tomography ; Computer Science ; CT imaging ; Deep learning ; Diagnosis ; Feature extraction ; Gastrointestinal cancer ; Gastrointestinal system ; Health Informatics ; Information Systems and Communication Service ; Lesions ; Machine learning ; Marine mammals ; Mathematical optimization ; Medical diagnosis ; Medical imaging ; Medical imaging equipment ; Neural networks ; Optimization ; Optimization algorithms ; PET imaging ; Positron emission</subject><ispartof>Health information science and systems, 2024-05, Vol.12 (1), p.35, Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-2082c8f132d4b5bf9d27d4116d9e198eb33568a76e919120e87477e5ff9d2bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13755-024-00294-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13755-024-00294-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38764569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alshardan, Amal</creatorcontrib><creatorcontrib>Saeed, Muhammad Kashif</creatorcontrib><creatorcontrib>Alotaibi, Shoayee Dlaim</creatorcontrib><creatorcontrib>Alashjaee, Abdullah M.</creatorcontrib><creatorcontrib>Salih, Nahla</creatorcontrib><creatorcontrib>Marzouk, Radwa</creatorcontrib><title>Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection</title><title>Health information science and systems</title><addtitle>Health Inf Sci Syst</addtitle><addtitle>Health Inf Sci Syst</addtitle><description>Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI cancer. CT scans, endoscopy, MRI, ultrasound, and positron emission tomography (PET) scans can help detect lesions, abnormal masses, and changes in tissue structure. Artificial intelligence (AI) and machine learning (ML) methods are being gradually applied to medical imaging for cancer diagnosis. ML algorithms, including deep learning methodologies like convolutional neural network (CNN), are applied frequently for cancer diagnosis. These models learn features and patterns from labelled datasets to discriminate between normal and abnormal areas in medical images. This article presents a new Harbor Seal Whiskers Optimization Algorithm with Deep Learning based Medical Imaging Analysis for Gastrointestinal Cancer Detection (HSWOA-DLGCD) technique. The goal of the HSWOA-DLGCD algorithm is to explore the GI images for the cancer diagnosis. In order to accomplish this, the HSWOA-DLGCD system applies bilateral filtering (BF) approach for the removal of noise. In addition, the HSWOA-DLGCD technique makes use of HSWOA with Xception model for feature extraction. For cancer recognition, the HSWOA-DLGCD technique applies extreme gradient boosting (XGBoost) model. Finally, the parameters compared with the XGBoost system can be selected by moth flame optimization (MFO) system. The experimental results of the HSWOA-DLGCD technique could be verified on the Kvasir database. The simulation outcome demonstrated a best possible solution of the HSWOA-DLGCD method than other recent methods.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>CT imaging</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Gastrointestinal cancer</subject><subject>Gastrointestinal system</subject><subject>Health Informatics</subject><subject>Information Systems and Communication Service</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Marine mammals</subject><subject>Mathematical optimization</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>PET imaging</subject><subject>Positron emission</subject><issn>2047-2501</issn><issn>2047-2501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFSEUhonR2Kb2D7gwJG7cTOVjGIZl06ht0sSNrgnDnJlSZ-AK3DTt1j_uub21VWOEBMjhOS_n8BLymrMTzph-X7jUSjVMtA1jwrSNfkYOBWt1IxTjz387H5DjUq4ZDsOFVPwlOZC97lrVmUPy49zlIWVawC305iqUb5ALTZsa1nDnakiRumVOOdSrld7gSkeADV3A5Rji3AyuwEhXGINHgbC6GaPURbfcllDohNKzKzWnECuUGvCCehc9ZBSq4HcvvCIvJrcUOH7Yj8jXjx--nJ03l58_XZydXjZeGlkbwXrh-4lLMbaDGiYzCj22nHejAW56GKRUXe90B4Zjpwx63WoNatqRwzDJI_Jur7vJ6fsWq7FrKB6WxUVI22IlU5pppbVC9O1f6HXaZiz-nlJC9ZL1T9TsFrAhTqlm53ei9lSblnHJ2w6pk39QOEdYg08RpoDxPxLEPsHnVEqGyW4y_my-tZzZnfl2b75F8-29-VZj0puHircD2vGY8stqBOQeKHgVZ8hPLf1H9id-67pA</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Alshardan, Amal</creator><creator>Saeed, Muhammad Kashif</creator><creator>Alotaibi, Shoayee Dlaim</creator><creator>Alashjaee, Abdullah M.</creator><creator>Salih, Nahla</creator><creator>Marzouk, Radwa</creator><general>Springer International Publishing</general><general>BioMed Central Ltd</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240515</creationdate><title>Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection</title><author>Alshardan, Amal ; Saeed, Muhammad Kashif ; Alotaibi, Shoayee Dlaim ; Alashjaee, Abdullah M. ; Salih, Nahla ; Marzouk, Radwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2082c8f132d4b5bf9d27d4116d9e198eb33568a76e919120e87477e5ff9d2bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>CT imaging</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Gastrointestinal cancer</topic><topic>Gastrointestinal system</topic><topic>Health Informatics</topic><topic>Information Systems and Communication Service</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Marine mammals</topic><topic>Mathematical optimization</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>PET imaging</topic><topic>Positron emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alshardan, Amal</creatorcontrib><creatorcontrib>Saeed, Muhammad Kashif</creatorcontrib><creatorcontrib>Alotaibi, Shoayee Dlaim</creatorcontrib><creatorcontrib>Alashjaee, Abdullah M.</creatorcontrib><creatorcontrib>Salih, Nahla</creatorcontrib><creatorcontrib>Marzouk, Radwa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Health information science and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alshardan, Amal</au><au>Saeed, Muhammad Kashif</au><au>Alotaibi, Shoayee Dlaim</au><au>Alashjaee, Abdullah M.</au><au>Salih, Nahla</au><au>Marzouk, Radwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection</atitle><jtitle>Health information science and systems</jtitle><stitle>Health Inf Sci Syst</stitle><addtitle>Health Inf Sci Syst</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>35</spage><pages>35-</pages><artnum>35</artnum><issn>2047-2501</issn><eissn>2047-2501</eissn><abstract>Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI cancer. CT scans, endoscopy, MRI, ultrasound, and positron emission tomography (PET) scans can help detect lesions, abnormal masses, and changes in tissue structure. Artificial intelligence (AI) and machine learning (ML) methods are being gradually applied to medical imaging for cancer diagnosis. ML algorithms, including deep learning methodologies like convolutional neural network (CNN), are applied frequently for cancer diagnosis. These models learn features and patterns from labelled datasets to discriminate between normal and abnormal areas in medical images. This article presents a new Harbor Seal Whiskers Optimization Algorithm with Deep Learning based Medical Imaging Analysis for Gastrointestinal Cancer Detection (HSWOA-DLGCD) technique. The goal of the HSWOA-DLGCD algorithm is to explore the GI images for the cancer diagnosis. In order to accomplish this, the HSWOA-DLGCD system applies bilateral filtering (BF) approach for the removal of noise. In addition, the HSWOA-DLGCD technique makes use of HSWOA with Xception model for feature extraction. For cancer recognition, the HSWOA-DLGCD technique applies extreme gradient boosting (XGBoost) model. Finally, the parameters compared with the XGBoost system can be selected by moth flame optimization (MFO) system. The experimental results of the HSWOA-DLGCD technique could be verified on the Kvasir database. The simulation outcome demonstrated a best possible solution of the HSWOA-DLGCD method than other recent methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38764569</pmid><doi>10.1007/s13755-024-00294-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-2501 |
ispartof | Health information science and systems, 2024-05, Vol.12 (1), p.35, Article 35 |
issn | 2047-2501 2047-2501 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057075775 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial intelligence Artificial neural networks Bioinformatics Cancer Care and treatment Computational Biology/Bioinformatics Computed tomography Computer Science CT imaging Deep learning Diagnosis Feature extraction Gastrointestinal cancer Gastrointestinal system Health Informatics Information Systems and Communication Service Lesions Machine learning Marine mammals Mathematical optimization Medical diagnosis Medical imaging Medical imaging equipment Neural networks Optimization Optimization algorithms PET imaging Positron emission |
title | Harbor seal whiskers optimization algorithm with deep learning-based medical imaging analysis for gastrointestinal cancer detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harbor%20seal%20whiskers%20optimization%20algorithm%20with%20deep%20learning-based%20medical%20imaging%20analysis%20for%20gastrointestinal%20cancer%20detection&rft.jtitle=Health%20information%20science%20and%20systems&rft.au=Alshardan,%20Amal&rft.date=2024-05-15&rft.volume=12&rft.issue=1&rft.spage=35&rft.pages=35-&rft.artnum=35&rft.issn=2047-2501&rft.eissn=2047-2501&rft_id=info:doi/10.1007/s13755-024-00294-7&rft_dat=%3Cgale_proqu%3EA794013146%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055258308&rft_id=info:pmid/38764569&rft_galeid=A794013146&rfr_iscdi=true |