Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction

How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-07, Vol.63 (31), p.e202406564
Hauptverfasser: Yan, Wenqian, Mo, Qijie, He, Qi-Ting, Li, Xiang-Ping, Xue, Ziqian, Lu, Yu-Lin, Chen, Jie, Zheng, Kai, Fan, Yanan, Li, Guangqin, Su, Cheng-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 31
container_start_page e202406564
container_title Angewandte Chemie International Edition
container_volume 63
creator Yan, Wenqian
Mo, Qijie
He, Qi-Ting
Li, Xiang-Ping
Xue, Ziqian
Lu, Yu-Lin
Chen, Jie
Zheng, Kai
Fan, Yanan
Li, Guangqin
Su, Cheng-Yong
description How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
doi_str_mv 10.1002/anie.202406564
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057075206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083197806</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-ca6105a8961fabbf87b2677391194cb988dd9f5ad92796432eedba774941246b3</originalsourceid><addsrcrecordid>eNpd0ElLw0AUAOBBFFurV48y4MVL6myZ5VhC1UJLQfRcZkudkmTqJBHqrzd1uXh678HH2wC4xmiKESL3ugl-ShBhiOecnYAxzgnOqBD0dMgZpZmQOR6Bi7bdDV5KxM_BiErBuRRkDNKsCbGBq-j6SnfHNJZwts0WdXD6M1YeFr2JttNv3iVdwUJvPVwFm6JvPkKKTe2broVlTHBelsGGoYTzytsuRas7XR26YGGxJvDZu94eJ1yCs1JXrb_6jRPw-jB_KZ6y5fpxUcyW2Z5Q1WVWc4xyLRXHpTamlMIQPtylMFbMGiWlc6rMtVNEKM4o8d4ZLQRTDBPGDZ2Au5---xTfe992mzq01leVbnzs2w1FuUAiJ4gP9PYf3cU-NcN2g5IUKyG_1c2v6k3t3WafQq3TYfP3TfoFd4N29w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083197806</pqid></control><display><type>article</type><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</creator><creatorcontrib>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</creatorcontrib><description>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202406564</identifier><identifier>PMID: 38766872</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Antifungal agents ; Benzene ; Benzimidazoles ; Cages ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Chemical industry ; Chemical reduction ; Coordination ; Density functional theory ; Electrocatalysts ; Electrolytes ; Fourier transforms ; Imidazole ; Infrared reflection ; Infrared spectroscopy ; Microenvironments ; Self-assembly</subject><ispartof>Angewandte Chemie International Edition, 2024-07, Vol.63 (31), p.e202406564</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38766872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Mo, Qijie</creatorcontrib><creatorcontrib>He, Qi-Ting</creatorcontrib><creatorcontrib>Li, Xiang-Ping</creatorcontrib><creatorcontrib>Xue, Ziqian</creatorcontrib><creatorcontrib>Lu, Yu-Lin</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Fan, Yanan</creatorcontrib><creatorcontrib>Li, Guangqin</creatorcontrib><creatorcontrib>Su, Cheng-Yong</creatorcontrib><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</description><subject>Anions</subject><subject>Antifungal agents</subject><subject>Benzene</subject><subject>Benzimidazoles</subject><subject>Cages</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemical reduction</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Imidazole</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Microenvironments</subject><subject>Self-assembly</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0ElLw0AUAOBBFFurV48y4MVL6myZ5VhC1UJLQfRcZkudkmTqJBHqrzd1uXh678HH2wC4xmiKESL3ugl-ShBhiOecnYAxzgnOqBD0dMgZpZmQOR6Bi7bdDV5KxM_BiErBuRRkDNKsCbGBq-j6SnfHNJZwts0WdXD6M1YeFr2JttNv3iVdwUJvPVwFm6JvPkKKTe2broVlTHBelsGGoYTzytsuRas7XR26YGGxJvDZu94eJ1yCs1JXrb_6jRPw-jB_KZ6y5fpxUcyW2Z5Q1WVWc4xyLRXHpTamlMIQPtylMFbMGiWlc6rMtVNEKM4o8d4ZLQRTDBPGDZ2Au5---xTfe992mzq01leVbnzs2w1FuUAiJ4gP9PYf3cU-NcN2g5IUKyG_1c2v6k3t3WafQq3TYfP3TfoFd4N29w</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Yan, Wenqian</creator><creator>Mo, Qijie</creator><creator>He, Qi-Ting</creator><creator>Li, Xiang-Ping</creator><creator>Xue, Ziqian</creator><creator>Lu, Yu-Lin</creator><creator>Chen, Jie</creator><creator>Zheng, Kai</creator><creator>Fan, Yanan</creator><creator>Li, Guangqin</creator><creator>Su, Cheng-Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240729</creationdate><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><author>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-ca6105a8961fabbf87b2677391194cb988dd9f5ad92796432eedba774941246b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>Antifungal agents</topic><topic>Benzene</topic><topic>Benzimidazoles</topic><topic>Cages</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemical reduction</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Imidazole</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Microenvironments</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Mo, Qijie</creatorcontrib><creatorcontrib>He, Qi-Ting</creatorcontrib><creatorcontrib>Li, Xiang-Ping</creatorcontrib><creatorcontrib>Xue, Ziqian</creatorcontrib><creatorcontrib>Lu, Yu-Lin</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Fan, Yanan</creatorcontrib><creatorcontrib>Li, Guangqin</creatorcontrib><creatorcontrib>Su, Cheng-Yong</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenqian</au><au>Mo, Qijie</au><au>He, Qi-Ting</au><au>Li, Xiang-Ping</au><au>Xue, Ziqian</au><au>Lu, Yu-Lin</au><au>Chen, Jie</au><au>Zheng, Kai</au><au>Fan, Yanan</au><au>Li, Guangqin</au><au>Su, Cheng-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>63</volume><issue>31</issue><spage>e202406564</spage><pages>e202406564-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38766872</pmid><doi>10.1002/anie.202406564</doi><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-07, Vol.63 (31), p.e202406564
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3057075206
source Wiley Online Library Journals Frontfile Complete
subjects Anions
Antifungal agents
Benzene
Benzimidazoles
Cages
Carbon dioxide
Carbon monoxide
Catalysts
Chemical industry
Chemical reduction
Coordination
Density functional theory
Electrocatalysts
Electrolytes
Fourier transforms
Imidazole
Infrared reflection
Infrared spectroscopy
Microenvironments
Self-assembly
title Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20Modulation%20of%20Ag-Imidazole%20Cuboctahedral%20Cage%20Microenvironments%20for%20Efficient%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Yan,%20Wenqian&rft.date=2024-07-29&rft.volume=63&rft.issue=31&rft.spage=e202406564&rft.pages=e202406564-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202406564&rft_dat=%3Cproquest_pubme%3E3083197806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083197806&rft_id=info:pmid/38766872&rfr_iscdi=true