Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembl...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-07, Vol.63 (31), p.e202406564 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 31 |
container_start_page | e202406564 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Yan, Wenqian Mo, Qijie He, Qi-Ting Li, Xiang-Ping Xue, Ziqian Lu, Yu-Lin Chen, Jie Zheng, Kai Fan, Yanan Li, Guangqin Su, Cheng-Yong |
description | How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process. |
doi_str_mv | 10.1002/anie.202406564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057075206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083197806</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-ca6105a8961fabbf87b2677391194cb988dd9f5ad92796432eedba774941246b3</originalsourceid><addsrcrecordid>eNpd0ElLw0AUAOBBFFurV48y4MVL6myZ5VhC1UJLQfRcZkudkmTqJBHqrzd1uXh678HH2wC4xmiKESL3ugl-ShBhiOecnYAxzgnOqBD0dMgZpZmQOR6Bi7bdDV5KxM_BiErBuRRkDNKsCbGBq-j6SnfHNJZwts0WdXD6M1YeFr2JttNv3iVdwUJvPVwFm6JvPkKKTe2broVlTHBelsGGoYTzytsuRas7XR26YGGxJvDZu94eJ1yCs1JXrb_6jRPw-jB_KZ6y5fpxUcyW2Z5Q1WVWc4xyLRXHpTamlMIQPtylMFbMGiWlc6rMtVNEKM4o8d4ZLQRTDBPGDZ2Au5---xTfe992mzq01leVbnzs2w1FuUAiJ4gP9PYf3cU-NcN2g5IUKyG_1c2v6k3t3WafQq3TYfP3TfoFd4N29w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083197806</pqid></control><display><type>article</type><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</creator><creatorcontrib>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</creatorcontrib><description>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202406564</identifier><identifier>PMID: 38766872</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Antifungal agents ; Benzene ; Benzimidazoles ; Cages ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Chemical industry ; Chemical reduction ; Coordination ; Density functional theory ; Electrocatalysts ; Electrolytes ; Fourier transforms ; Imidazole ; Infrared reflection ; Infrared spectroscopy ; Microenvironments ; Self-assembly</subject><ispartof>Angewandte Chemie International Edition, 2024-07, Vol.63 (31), p.e202406564</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38766872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Mo, Qijie</creatorcontrib><creatorcontrib>He, Qi-Ting</creatorcontrib><creatorcontrib>Li, Xiang-Ping</creatorcontrib><creatorcontrib>Xue, Ziqian</creatorcontrib><creatorcontrib>Lu, Yu-Lin</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Fan, Yanan</creatorcontrib><creatorcontrib>Li, Guangqin</creatorcontrib><creatorcontrib>Su, Cheng-Yong</creatorcontrib><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</description><subject>Anions</subject><subject>Antifungal agents</subject><subject>Benzene</subject><subject>Benzimidazoles</subject><subject>Cages</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemical reduction</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Imidazole</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Microenvironments</subject><subject>Self-assembly</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0ElLw0AUAOBBFFurV48y4MVL6myZ5VhC1UJLQfRcZkudkmTqJBHqrzd1uXh678HH2wC4xmiKESL3ugl-ShBhiOecnYAxzgnOqBD0dMgZpZmQOR6Bi7bdDV5KxM_BiErBuRRkDNKsCbGBq-j6SnfHNJZwts0WdXD6M1YeFr2JttNv3iVdwUJvPVwFm6JvPkKKTe2broVlTHBelsGGoYTzytsuRas7XR26YGGxJvDZu94eJ1yCs1JXrb_6jRPw-jB_KZ6y5fpxUcyW2Z5Q1WVWc4xyLRXHpTamlMIQPtylMFbMGiWlc6rMtVNEKM4o8d4ZLQRTDBPGDZ2Au5---xTfe992mzq01leVbnzs2w1FuUAiJ4gP9PYf3cU-NcN2g5IUKyG_1c2v6k3t3WafQq3TYfP3TfoFd4N29w</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Yan, Wenqian</creator><creator>Mo, Qijie</creator><creator>He, Qi-Ting</creator><creator>Li, Xiang-Ping</creator><creator>Xue, Ziqian</creator><creator>Lu, Yu-Lin</creator><creator>Chen, Jie</creator><creator>Zheng, Kai</creator><creator>Fan, Yanan</creator><creator>Li, Guangqin</creator><creator>Su, Cheng-Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240729</creationdate><title>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</title><author>Yan, Wenqian ; Mo, Qijie ; He, Qi-Ting ; Li, Xiang-Ping ; Xue, Ziqian ; Lu, Yu-Lin ; Chen, Jie ; Zheng, Kai ; Fan, Yanan ; Li, Guangqin ; Su, Cheng-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-ca6105a8961fabbf87b2677391194cb988dd9f5ad92796432eedba774941246b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>Antifungal agents</topic><topic>Benzene</topic><topic>Benzimidazoles</topic><topic>Cages</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemical reduction</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Imidazole</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Microenvironments</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Mo, Qijie</creatorcontrib><creatorcontrib>He, Qi-Ting</creatorcontrib><creatorcontrib>Li, Xiang-Ping</creatorcontrib><creatorcontrib>Xue, Ziqian</creatorcontrib><creatorcontrib>Lu, Yu-Lin</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Fan, Yanan</creatorcontrib><creatorcontrib>Li, Guangqin</creatorcontrib><creatorcontrib>Su, Cheng-Yong</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenqian</au><au>Mo, Qijie</au><au>He, Qi-Ting</au><au>Li, Xiang-Ping</au><au>Xue, Ziqian</au><au>Lu, Yu-Lin</au><au>Chen, Jie</au><au>Zheng, Kai</au><au>Fan, Yanan</au><au>Li, Guangqin</au><au>Su, Cheng-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>63</volume><issue>31</issue><spage>e202406564</spage><pages>e202406564-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38766872</pmid><doi>10.1002/anie.202406564</doi><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-07, Vol.63 (31), p.e202406564 |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057075206 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anions Antifungal agents Benzene Benzimidazoles Cages Carbon dioxide Carbon monoxide Catalysts Chemical industry Chemical reduction Coordination Density functional theory Electrocatalysts Electrolytes Fourier transforms Imidazole Infrared reflection Infrared spectroscopy Microenvironments Self-assembly |
title | Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20Modulation%20of%20Ag-Imidazole%20Cuboctahedral%20Cage%20Microenvironments%20for%20Efficient%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Yan,%20Wenqian&rft.date=2024-07-29&rft.volume=63&rft.issue=31&rft.spage=e202406564&rft.pages=e202406564-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202406564&rft_dat=%3Cproquest_pubme%3E3083197806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083197806&rft_id=info:pmid/38766872&rfr_iscdi=true |