Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties
Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetra...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2402529-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e2402529 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Gu, Yucong Wang, Gaopeng Chen, Xuanzhou Xu, Xiaohan Liu, Yanghe Yang, Jintao Zhang, Dong |
description | Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.
A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields. |
doi_str_mv | 10.1002/smll.202402529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057075126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057075126</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3069-f0beb7fb9906d968355416faa8c2098a2e3731aac32fc19feb6887cd3a7a06d3</originalsourceid><addsrcrecordid>eNpdkU1PAjEQhjdGExG9em7ixQvYD_aj3ghRMcFAAp6bbpmFYne7tt2Q9Tf4o13EcPA0M8kz7zuZN4puCR4SjOmDL40ZUkxHmMaUn0U9khA2SDLKz089wZfRlfc7jBmho7QXfb9XxqoPXW1Q2AJa2ABV0NIgW6DJnKKJrEPj4BGN0bKtwG20D1qhaZs7vdZfMmhboWVwMsCmRYV1nYRpS3C_0NrZDRiP9jps0aqpZG46j23rtbJqC6VWndPC2Rpc0OCvo4tCGg83f7UfrZ6fVpPpYDZ_eZ2MZ4Oa4YQPCpxDnhY55zhZ8yRjcTwiSSFlpijmmaTAUkakVIwWivAC8iTLUrVmMpXdButH90fZ2tnPBnwQpfYKjJEV2MYLhuMUpzGhSYfe_UN3tnFVd5xgpPtgzEY47ih-pPbaQCtqp0vpWkGwOAQjDsGIUzBi-TabnSb2A-zahrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453405</pqid></control><display><type>article</type><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><source>Wiley Journals</source><creator>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</creator><creatorcontrib>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</creatorcontrib><description>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.
A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402529</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Adhesive strength ; antibacterial hydrogels ; Biomedical materials ; Calcium carbonate ; Calcium chloride ; Carbon dioxide ; Carbon sequestration ; CO2 capture ; Decoupling ; Fumigation ; hybrid materials ; Hydrogels ; Interpenetrating networks ; Mechanical properties ; Optical properties ; Polyethyleneimine ; reversible bonding</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402529-n/a</ispartof><rights>2024 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7002-7661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402529$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402529$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gu, Yucong</creatorcontrib><creatorcontrib>Wang, Gaopeng</creatorcontrib><creatorcontrib>Chen, Xuanzhou</creatorcontrib><creatorcontrib>Xu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Yanghe</creatorcontrib><creatorcontrib>Yang, Jintao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.
A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</description><subject>Acrylamide</subject><subject>Adhesive strength</subject><subject>antibacterial hydrogels</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium chloride</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO2 capture</subject><subject>Decoupling</subject><subject>Fumigation</subject><subject>hybrid materials</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Polyethyleneimine</subject><subject>reversible bonding</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkU1PAjEQhjdGExG9em7ixQvYD_aj3ghRMcFAAp6bbpmFYne7tt2Q9Tf4o13EcPA0M8kz7zuZN4puCR4SjOmDL40ZUkxHmMaUn0U9khA2SDLKz089wZfRlfc7jBmho7QXfb9XxqoPXW1Q2AJa2ABV0NIgW6DJnKKJrEPj4BGN0bKtwG20D1qhaZs7vdZfMmhboWVwMsCmRYV1nYRpS3C_0NrZDRiP9jps0aqpZG46j23rtbJqC6VWndPC2Rpc0OCvo4tCGg83f7UfrZ6fVpPpYDZ_eZ2MZ4Oa4YQPCpxDnhY55zhZ8yRjcTwiSSFlpijmmaTAUkakVIwWivAC8iTLUrVmMpXdButH90fZ2tnPBnwQpfYKjJEV2MYLhuMUpzGhSYfe_UN3tnFVd5xgpPtgzEY47ih-pPbaQCtqp0vpWkGwOAQjDsGIUzBi-TabnSb2A-zahrg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gu, Yucong</creator><creator>Wang, Gaopeng</creator><creator>Chen, Xuanzhou</creator><creator>Xu, Xiaohan</creator><creator>Liu, Yanghe</creator><creator>Yang, Jintao</creator><creator>Zhang, Dong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7002-7661</orcidid></search><sort><creationdate>20240901</creationdate><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><author>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3069-f0beb7fb9906d968355416faa8c2098a2e3731aac32fc19feb6887cd3a7a06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Adhesive strength</topic><topic>antibacterial hydrogels</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium chloride</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO2 capture</topic><topic>Decoupling</topic><topic>Fumigation</topic><topic>hybrid materials</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Polyethyleneimine</topic><topic>reversible bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yucong</creatorcontrib><creatorcontrib>Wang, Gaopeng</creatorcontrib><creatorcontrib>Chen, Xuanzhou</creatorcontrib><creatorcontrib>Xu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Yanghe</creatorcontrib><creatorcontrib>Yang, Jintao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yucong</au><au>Wang, Gaopeng</au><au>Chen, Xuanzhou</au><au>Xu, Xiaohan</au><au>Liu, Yanghe</au><au>Yang, Jintao</au><au>Zhang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2402529</spage><epage>n/a</epage><pages>e2402529-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.
A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202402529</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7002-7661</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402529-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057075126 |
source | Wiley Journals |
subjects | Acrylamide Adhesive strength antibacterial hydrogels Biomedical materials Calcium carbonate Calcium chloride Carbon dioxide Carbon sequestration CO2 capture Decoupling Fumigation hybrid materials Hydrogels Interpenetrating networks Mechanical properties Optical properties Polyethyleneimine reversible bonding |
title | Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20the%20Potential%20of%20CO2%20Capture:%20A%20Synergistic%20Hybridization%20Strategy%20for%20Polymeric%20Hydrogels%20with%20Tunable%20Physicochemical%20Properties&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gu,%20Yucong&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2402529&rft.epage=n/a&rft.pages=e2402529-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402529&rft_dat=%3Cproquest_wiley%3E3057075126%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112453405&rft_id=info:pmid/&rfr_iscdi=true |