Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2402529-n/a
Hauptverfasser: Gu, Yucong, Wang, Gaopeng, Chen, Xuanzhou, Xu, Xiaohan, Liu, Yanghe, Yang, Jintao, Zhang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2402529
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Gu, Yucong
Wang, Gaopeng
Chen, Xuanzhou
Xu, Xiaohan
Liu, Yanghe
Yang, Jintao
Zhang, Dong
description Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications. A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.
doi_str_mv 10.1002/smll.202402529
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057075126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057075126</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3069-f0beb7fb9906d968355416faa8c2098a2e3731aac32fc19feb6887cd3a7a06d3</originalsourceid><addsrcrecordid>eNpdkU1PAjEQhjdGExG9em7ixQvYD_aj3ghRMcFAAp6bbpmFYne7tt2Q9Tf4o13EcPA0M8kz7zuZN4puCR4SjOmDL40ZUkxHmMaUn0U9khA2SDLKz089wZfRlfc7jBmho7QXfb9XxqoPXW1Q2AJa2ABV0NIgW6DJnKKJrEPj4BGN0bKtwG20D1qhaZs7vdZfMmhboWVwMsCmRYV1nYRpS3C_0NrZDRiP9jps0aqpZG46j23rtbJqC6VWndPC2Rpc0OCvo4tCGg83f7UfrZ6fVpPpYDZ_eZ2MZ4Oa4YQPCpxDnhY55zhZ8yRjcTwiSSFlpijmmaTAUkakVIwWivAC8iTLUrVmMpXdButH90fZ2tnPBnwQpfYKjJEV2MYLhuMUpzGhSYfe_UN3tnFVd5xgpPtgzEY47ih-pPbaQCtqp0vpWkGwOAQjDsGIUzBi-TabnSb2A-zahrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453405</pqid></control><display><type>article</type><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><source>Wiley Journals</source><creator>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</creator><creatorcontrib>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</creatorcontrib><description>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications. A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402529</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Adhesive strength ; antibacterial hydrogels ; Biomedical materials ; Calcium carbonate ; Calcium chloride ; Carbon dioxide ; Carbon sequestration ; CO2 capture ; Decoupling ; Fumigation ; hybrid materials ; Hydrogels ; Interpenetrating networks ; Mechanical properties ; Optical properties ; Polyethyleneimine ; reversible bonding</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402529-n/a</ispartof><rights>2024 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7002-7661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402529$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402529$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gu, Yucong</creatorcontrib><creatorcontrib>Wang, Gaopeng</creatorcontrib><creatorcontrib>Chen, Xuanzhou</creatorcontrib><creatorcontrib>Xu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Yanghe</creatorcontrib><creatorcontrib>Yang, Jintao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications. A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</description><subject>Acrylamide</subject><subject>Adhesive strength</subject><subject>antibacterial hydrogels</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium chloride</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO2 capture</subject><subject>Decoupling</subject><subject>Fumigation</subject><subject>hybrid materials</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Polyethyleneimine</subject><subject>reversible bonding</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkU1PAjEQhjdGExG9em7ixQvYD_aj3ghRMcFAAp6bbpmFYne7tt2Q9Tf4o13EcPA0M8kz7zuZN4puCR4SjOmDL40ZUkxHmMaUn0U9khA2SDLKz089wZfRlfc7jBmho7QXfb9XxqoPXW1Q2AJa2ABV0NIgW6DJnKKJrEPj4BGN0bKtwG20D1qhaZs7vdZfMmhboWVwMsCmRYV1nYRpS3C_0NrZDRiP9jps0aqpZG46j23rtbJqC6VWndPC2Rpc0OCvo4tCGg83f7UfrZ6fVpPpYDZ_eZ2MZ4Oa4YQPCpxDnhY55zhZ8yRjcTwiSSFlpijmmaTAUkakVIwWivAC8iTLUrVmMpXdButH90fZ2tnPBnwQpfYKjJEV2MYLhuMUpzGhSYfe_UN3tnFVd5xgpPtgzEY47ih-pPbaQCtqp0vpWkGwOAQjDsGIUzBi-TabnSb2A-zahrg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gu, Yucong</creator><creator>Wang, Gaopeng</creator><creator>Chen, Xuanzhou</creator><creator>Xu, Xiaohan</creator><creator>Liu, Yanghe</creator><creator>Yang, Jintao</creator><creator>Zhang, Dong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7002-7661</orcidid></search><sort><creationdate>20240901</creationdate><title>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</title><author>Gu, Yucong ; Wang, Gaopeng ; Chen, Xuanzhou ; Xu, Xiaohan ; Liu, Yanghe ; Yang, Jintao ; Zhang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3069-f0beb7fb9906d968355416faa8c2098a2e3731aac32fc19feb6887cd3a7a06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Adhesive strength</topic><topic>antibacterial hydrogels</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium chloride</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO2 capture</topic><topic>Decoupling</topic><topic>Fumigation</topic><topic>hybrid materials</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Polyethyleneimine</topic><topic>reversible bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yucong</creatorcontrib><creatorcontrib>Wang, Gaopeng</creatorcontrib><creatorcontrib>Chen, Xuanzhou</creatorcontrib><creatorcontrib>Xu, Xiaohan</creatorcontrib><creatorcontrib>Liu, Yanghe</creatorcontrib><creatorcontrib>Yang, Jintao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yucong</au><au>Wang, Gaopeng</au><au>Chen, Xuanzhou</au><au>Xu, Xiaohan</au><au>Liu, Yanghe</au><au>Yang, Jintao</au><au>Zhang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2402529</spage><epage>n/a</epage><pages>e2402529-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2‐fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro‐crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture‐release cycles up to 8 times. Furthermore, the polyethyleneimine‐acrylamide‐calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine‐tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications. A synergistic hybridization strategy that involves synthesizing CO2‐responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine chains and inorganic CaCl2 is developed. This innovative design not only facilitates efficient CO2 capture but also harnesses its presence to tune their optical and mechanical properties once interacting with CO2, presenting versatile applications in various biological and biomedical fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202402529</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7002-7661</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402529-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3057075126
source Wiley Journals
subjects Acrylamide
Adhesive strength
antibacterial hydrogels
Biomedical materials
Calcium carbonate
Calcium chloride
Carbon dioxide
Carbon sequestration
CO2 capture
Decoupling
Fumigation
hybrid materials
Hydrogels
Interpenetrating networks
Mechanical properties
Optical properties
Polyethyleneimine
reversible bonding
title Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20the%20Potential%20of%20CO2%20Capture:%20A%20Synergistic%20Hybridization%20Strategy%20for%20Polymeric%20Hydrogels%20with%20Tunable%20Physicochemical%20Properties&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gu,%20Yucong&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2402529&rft.epage=n/a&rft.pages=e2402529-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402529&rft_dat=%3Cproquest_wiley%3E3057075126%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112453405&rft_id=info:pmid/&rfr_iscdi=true