Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting

Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-05, Vol.15 (21), p.5681-5688
Hauptverfasser: Du, Yu, Arifuddin, Alam Andi, Qin, Hao, Yan, Shicheng, Zou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5688
container_issue 21
container_start_page 5681
container_title The journal of physical chemistry letters
container_volume 15
creator Du, Yu
Arifuddin, Alam Andi
Qin, Hao
Yan, Shicheng
Zou, Zhigang
description Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.
doi_str_mv 10.1021/acs.jpclett.4c01154
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057073253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057073253</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-e049929c05663b70ec01c60f74c9100c0f7d7b8044aa0e2dd02bb10476402ba53</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhRujiYj-Ai979LIw7Xa3u0dCVExIIAHjxaTpdgcpKVtsy8VfbwUOnuabmZfJm0fII4URBUbHSofR7qAtxjjiGigt-RUZ0IbXuaB1ef2Pb8ldCDuAqoFaDMjneot-r2y-iqo11vxgly29i65XMeHaLFi2cT6boYr5RGu06E-b5TaJUqejd3qLe6OVzT7SymergzUxmv7rntxslA34cKlD8v7yvJ7O8vni9W06meeKsTrmCLxpWKOhrKqiFYDpA13BRnDdUACdqBNtDZwrBci6DljbUuCi4olUWQzJ0_nuwbvvI4Yo9yYkq1b16I5BFlAKEAUriyQdn6UpMrlzR98nY5KC_MtRnobnHOUlx-IXHltpmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057073253</pqid></control><display><type>article</type><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><source>ACS Publications</source><creator>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</creator><creatorcontrib>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</creatorcontrib><description>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c01154</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2024-05, Vol.15 (21), p.5681-5688</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3432-9117 ; 0000-0003-2092-8335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c01154$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c01154$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Arifuddin, Alam Andi</creatorcontrib><creatorcontrib>Qin, Hao</creatorcontrib><creatorcontrib>Yan, Shicheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</description><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPAjEQhRujiYj-Ai979LIw7Xa3u0dCVExIIAHjxaTpdgcpKVtsy8VfbwUOnuabmZfJm0fII4URBUbHSofR7qAtxjjiGigt-RUZ0IbXuaB1ef2Pb8ldCDuAqoFaDMjneot-r2y-iqo11vxgly29i65XMeHaLFi2cT6boYr5RGu06E-b5TaJUqejd3qLe6OVzT7SymergzUxmv7rntxslA34cKlD8v7yvJ7O8vni9W06meeKsTrmCLxpWKOhrKqiFYDpA13BRnDdUACdqBNtDZwrBci6DljbUuCi4olUWQzJ0_nuwbvvI4Yo9yYkq1b16I5BFlAKEAUriyQdn6UpMrlzR98nY5KC_MtRnobnHOUlx-IXHltpmg</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Du, Yu</creator><creator>Arifuddin, Alam Andi</creator><creator>Qin, Hao</creator><creator>Yan, Shicheng</creator><creator>Zou, Zhigang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3432-9117</orcidid><orcidid>https://orcid.org/0000-0003-2092-8335</orcidid></search><sort><creationdate>20240530</creationdate><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><author>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-e049929c05663b70ec01c60f74c9100c0f7d7b8044aa0e2dd02bb10476402ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Arifuddin, Alam Andi</creatorcontrib><creatorcontrib>Qin, Hao</creatorcontrib><creatorcontrib>Yan, Shicheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yu</au><au>Arifuddin, Alam Andi</au><au>Qin, Hao</au><au>Yan, Shicheng</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>15</volume><issue>21</issue><spage>5681</spage><epage>5688</epage><pages>5681-5688</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.4c01154</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3432-9117</orcidid><orcidid>https://orcid.org/0000-0003-2092-8335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-05, Vol.15 (21), p.5681-5688
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_3057073253
source ACS Publications
subjects Physical Insights into Energy Science
title Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-Stabilized%20Protonated%20TiO2%20for%20Heat-Accelerated%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Du,%20Yu&rft.date=2024-05-30&rft.volume=15&rft.issue=21&rft.spage=5681&rft.epage=5688&rft.pages=5681-5688&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c01154&rft_dat=%3Cproquest_acs_j%3E3057073253%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057073253&rft_id=info:pmid/&rfr_iscdi=true