Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting
Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-05, Vol.15 (21), p.5681-5688 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5688 |
---|---|
container_issue | 21 |
container_start_page | 5681 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Du, Yu Arifuddin, Alam Andi Qin, Hao Yan, Shicheng Zou, Zhigang |
description | Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons. |
doi_str_mv | 10.1021/acs.jpclett.4c01154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057073253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057073253</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-e049929c05663b70ec01c60f74c9100c0f7d7b8044aa0e2dd02bb10476402ba53</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhRujiYj-Ai979LIw7Xa3u0dCVExIIAHjxaTpdgcpKVtsy8VfbwUOnuabmZfJm0fII4URBUbHSofR7qAtxjjiGigt-RUZ0IbXuaB1ef2Pb8ldCDuAqoFaDMjneot-r2y-iqo11vxgly29i65XMeHaLFi2cT6boYr5RGu06E-b5TaJUqejd3qLe6OVzT7SymergzUxmv7rntxslA34cKlD8v7yvJ7O8vni9W06meeKsTrmCLxpWKOhrKqiFYDpA13BRnDdUACdqBNtDZwrBci6DljbUuCi4olUWQzJ0_nuwbvvI4Yo9yYkq1b16I5BFlAKEAUriyQdn6UpMrlzR98nY5KC_MtRnobnHOUlx-IXHltpmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057073253</pqid></control><display><type>article</type><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><source>ACS Publications</source><creator>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</creator><creatorcontrib>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</creatorcontrib><description>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c01154</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2024-05, Vol.15 (21), p.5681-5688</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3432-9117 ; 0000-0003-2092-8335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c01154$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c01154$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Arifuddin, Alam Andi</creatorcontrib><creatorcontrib>Qin, Hao</creatorcontrib><creatorcontrib>Yan, Shicheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</description><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPAjEQhRujiYj-Ai979LIw7Xa3u0dCVExIIAHjxaTpdgcpKVtsy8VfbwUOnuabmZfJm0fII4URBUbHSofR7qAtxjjiGigt-RUZ0IbXuaB1ef2Pb8ldCDuAqoFaDMjneot-r2y-iqo11vxgly29i65XMeHaLFi2cT6boYr5RGu06E-b5TaJUqejd3qLe6OVzT7SymergzUxmv7rntxslA34cKlD8v7yvJ7O8vni9W06meeKsTrmCLxpWKOhrKqiFYDpA13BRnDdUACdqBNtDZwrBci6DljbUuCi4olUWQzJ0_nuwbvvI4Yo9yYkq1b16I5BFlAKEAUriyQdn6UpMrlzR98nY5KC_MtRnobnHOUlx-IXHltpmg</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Du, Yu</creator><creator>Arifuddin, Alam Andi</creator><creator>Qin, Hao</creator><creator>Yan, Shicheng</creator><creator>Zou, Zhigang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3432-9117</orcidid><orcidid>https://orcid.org/0000-0003-2092-8335</orcidid></search><sort><creationdate>20240530</creationdate><title>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</title><author>Du, Yu ; Arifuddin, Alam Andi ; Qin, Hao ; Yan, Shicheng ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-e049929c05663b70ec01c60f74c9100c0f7d7b8044aa0e2dd02bb10476402ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Arifuddin, Alam Andi</creatorcontrib><creatorcontrib>Qin, Hao</creatorcontrib><creatorcontrib>Yan, Shicheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yu</au><au>Arifuddin, Alam Andi</au><au>Qin, Hao</au><au>Yan, Shicheng</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>15</volume><issue>21</issue><spage>5681</spage><epage>5688</epage><pages>5681-5688</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90–TiO2–x –(OH) x ] is thermally stable. As a result, the thermally enhanced photocurrent of the 90–TiO2–x –(OH) x electrode reached 1.05 mA cm–2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.4c01154</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3432-9117</orcidid><orcidid>https://orcid.org/0000-0003-2092-8335</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-05, Vol.15 (21), p.5681-5688 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057073253 |
source | ACS Publications |
subjects | Physical Insights into Energy Science |
title | Thermal-Stabilized Protonated TiO2 for Heat-Accelerated Photoelectrochemical Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-Stabilized%20Protonated%20TiO2%20for%20Heat-Accelerated%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Du,%20Yu&rft.date=2024-05-30&rft.volume=15&rft.issue=21&rft.spage=5681&rft.epage=5688&rft.pages=5681-5688&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c01154&rft_dat=%3Cproquest_acs_j%3E3057073253%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057073253&rft_id=info:pmid/&rfr_iscdi=true |