Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction
One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-06, Vol.16 (22), p.10663-10674 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10674 |
---|---|
container_issue | 22 |
container_start_page | 10663 |
container_title | Nanoscale |
container_volume | 16 |
creator | Gaur, Ashish Aashi Joel Mathew John Pundir, Vikas Kaur, Rajdeep Sharma, Jatin Gupta, Kaustubhi Bera, Chandan Bagchi, Vivek |
description | One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4–Ni3N into MnCo2O4–NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm−2. Strong interfacial contact is seen in the MnCo2O4–Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm−2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone. |
doi_str_mv | 10.1039/d4nr00560k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3057072709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064881562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-e017609345570374a0ed8010a0df60ca5caa964b65c0fe1318d58a864495dde3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0EEqWw8ASWWFgCN7HjJCOqyo8E7dK9cu2bxiW1g-0g2HgHXoBn40kIFDEwnW84-s69hJymcJECqy41tx4gF_C4R0YZcEgYK7L9Pxb8kByFsAEQFRNsRD6mLaronTWKetQmRG9WfTTO0th416-bIZEaG9HXUiF1NX2wE5fN-efb-8ywGbXSuqT3qjE20M67bRcD9bIzmt5ZGkzsadfIgDR6aUPt_Fb--AeiaBtpFWrqXl7XaCk-u3a37lGqbzgmB7VsA5785pgsrqeLyW1yP7-5m1zdJ12WipggpIWAivE8L4AVXALqElKQoGsBSuZKykrwlcgV1JiytNR5KUvBeZVrjWxMznfa4YGnHkNcbk1Q2LbSouvDksHgLbJimBiTs3_Vjeu9HY4bWoKXZZqLjH0BAbB9Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064881562</pqid></control><display><type>article</type><title>Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gaur, Ashish ; Aashi ; Joel Mathew John ; Pundir, Vikas ; Kaur, Rajdeep ; Sharma, Jatin ; Gupta, Kaustubhi ; Bera, Chandan ; Bagchi, Vivek</creator><creatorcontrib>Gaur, Ashish ; Aashi ; Joel Mathew John ; Pundir, Vikas ; Kaur, Rajdeep ; Sharma, Jatin ; Gupta, Kaustubhi ; Bera, Chandan ; Bagchi, Vivek</creatorcontrib><description>One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4–Ni3N into MnCo2O4–NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm−2. Strong interfacial contact is seen in the MnCo2O4–Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm−2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr00560k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transfer ; Commercialization ; Current density ; Electrocatalysts ; Energy conversion ; Kinetics ; Oxygen evolution reactions ; Phase transitions ; Valence</subject><ispartof>Nanoscale, 2024-06, Vol.16 (22), p.10663-10674</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Aashi</creatorcontrib><creatorcontrib>Joel Mathew John</creatorcontrib><creatorcontrib>Pundir, Vikas</creatorcontrib><creatorcontrib>Kaur, Rajdeep</creatorcontrib><creatorcontrib>Sharma, Jatin</creatorcontrib><creatorcontrib>Gupta, Kaustubhi</creatorcontrib><creatorcontrib>Bera, Chandan</creatorcontrib><creatorcontrib>Bagchi, Vivek</creatorcontrib><title>Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction</title><title>Nanoscale</title><description>One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4–Ni3N into MnCo2O4–NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm−2. Strong interfacial contact is seen in the MnCo2O4–Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm−2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Commercialization</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Kinetics</subject><subject>Oxygen evolution reactions</subject><subject>Phase transitions</subject><subject>Valence</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0EEqWw8ASWWFgCN7HjJCOqyo8E7dK9cu2bxiW1g-0g2HgHXoBn40kIFDEwnW84-s69hJymcJECqy41tx4gF_C4R0YZcEgYK7L9Pxb8kByFsAEQFRNsRD6mLaronTWKetQmRG9WfTTO0th416-bIZEaG9HXUiF1NX2wE5fN-efb-8ywGbXSuqT3qjE20M67bRcD9bIzmt5ZGkzsadfIgDR6aUPt_Fb--AeiaBtpFWrqXl7XaCk-u3a37lGqbzgmB7VsA5785pgsrqeLyW1yP7-5m1zdJ12WipggpIWAivE8L4AVXALqElKQoGsBSuZKykrwlcgV1JiytNR5KUvBeZVrjWxMznfa4YGnHkNcbk1Q2LbSouvDksHgLbJimBiTs3_Vjeu9HY4bWoKXZZqLjH0BAbB9Bg</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Gaur, Ashish</creator><creator>Aashi</creator><creator>Joel Mathew John</creator><creator>Pundir, Vikas</creator><creator>Kaur, Rajdeep</creator><creator>Sharma, Jatin</creator><creator>Gupta, Kaustubhi</creator><creator>Bera, Chandan</creator><creator>Bagchi, Vivek</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240606</creationdate><title>Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction</title><author>Gaur, Ashish ; Aashi ; Joel Mathew John ; Pundir, Vikas ; Kaur, Rajdeep ; Sharma, Jatin ; Gupta, Kaustubhi ; Bera, Chandan ; Bagchi, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-e017609345570374a0ed8010a0df60ca5caa964b65c0fe1318d58a864495dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Commercialization</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Kinetics</topic><topic>Oxygen evolution reactions</topic><topic>Phase transitions</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Aashi</creatorcontrib><creatorcontrib>Joel Mathew John</creatorcontrib><creatorcontrib>Pundir, Vikas</creatorcontrib><creatorcontrib>Kaur, Rajdeep</creatorcontrib><creatorcontrib>Sharma, Jatin</creatorcontrib><creatorcontrib>Gupta, Kaustubhi</creatorcontrib><creatorcontrib>Bera, Chandan</creatorcontrib><creatorcontrib>Bagchi, Vivek</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaur, Ashish</au><au>Aashi</au><au>Joel Mathew John</au><au>Pundir, Vikas</au><au>Kaur, Rajdeep</au><au>Sharma, Jatin</au><au>Gupta, Kaustubhi</au><au>Bera, Chandan</au><au>Bagchi, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction</atitle><jtitle>Nanoscale</jtitle><date>2024-06-06</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>10663</spage><epage>10674</epage><pages>10663-10674</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4–Ni3N into MnCo2O4–NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm−2. Strong interfacial contact is seen in the MnCo2O4–Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm−2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr00560k</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-06, Vol.16 (22), p.10663-10674 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_3057072709 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Catalysts Charge transfer Commercialization Current density Electrocatalysts Energy conversion Kinetics Oxygen evolution reactions Phase transitions Valence |
title | Electronic redistribution through the interface of MnCo2O4–Ni3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20redistribution%20through%20the%20interface%20of%20MnCo2O4%E2%80%93Ni3N%20nano-urchins%20prompts%20rapid%20In%20situ%20phase%20transformation%20for%20enhanced%20oxygen%20evolution%20reaction&rft.jtitle=Nanoscale&rft.au=Gaur,%20Ashish&rft.date=2024-06-06&rft.volume=16&rft.issue=22&rft.spage=10663&rft.epage=10674&rft.pages=10663-10674&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr00560k&rft_dat=%3Cproquest%3E3064881562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064881562&rft_id=info:pmid/&rfr_iscdi=true |