Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments

Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2404485-n/a
Hauptverfasser: Zhang, Dongdong, Li, Mei, Chen, Shuhan, Du, Huihui, Zhong, Hua, Wu, Jun, Liu, Feihong, Zhang, Qian, Peng, Feng, Liu, Xuanyong, Yeung, Kelvin W.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2404485
container_title Advanced materials (Weinheim)
container_volume 36
creator Zhang, Dongdong
Li, Mei
Chen, Shuhan
Du, Huihui
Zhong, Hua
Wu, Jun
Liu, Feihong
Zhang, Qian
Peng, Feng
Liu, Xuanyong
Yeung, Kelvin W.K.
description Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials. A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.
doi_str_mv 10.1002/adma.202404485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056670530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056670530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEotvClSOyxIVLFieOE-e4LC2taGmlhXM0sSdbV7G9tZ2F_Wv9dbjdtkhcOM2M_M3T-L0se1fQeUFp-QmUgXlJy4pWleAvslnByyKvaMtfZjPaMp63dSUOssMQbiilbU3r19kBE02dJjbL7r67LY7kCsYRlJ4MOd0prxWS1eQHkEiOLfSjtmuy0mYaI1h0UyCfQUb0GkbyTY8Pz2AVuQwR3RqtluTEeQNRO0vitXfT-ppceRfTuIRNnPzTxkJGvd1zbiALm7rfWoGNZLVLYoZoS86MmSySCy29Q7vV3lmDNoY32asBxoBvH-tR9vPk-MfyND-__Hq2XJznsuSC51CVquG1UL1sW-ybWmAPfcXlkFwqRTmwviwAeiYkwjDQpmQNFophTXnikB1lH_e6G-9uJwyxMzpITIY9eNExyuu6oZzRhH74B71xk7fpukSJWlBGG5Go-Z5KHwrB49BtvDbgd11Bu_tUu_tUu-dU08L7R9mpN6ie8acYE9DugV96xN1_5LrFl4vFX_E_fISzPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803078</pqid></control><display><type>article</type><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</creator><creatorcontrib>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</creatorcontrib><description>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials. A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404485</identifier><identifier>PMID: 38760003</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antioxidants ; Antioxidants - chemistry ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Bacteria ; bacterial killing ; Disruption ; enzyme‐like activity ; Humans ; Hydrides ; Hydrogen - chemistry ; Hydrogen - metabolism ; Immune system ; Osteogenesis - drug effects ; osteogenic immune microenvironment ; Oxidative Stress - drug effects ; Palladium ; Palladium - chemistry ; palladium hydride film ; Proton transfer ; Protons ; Reactive Oxygen Species - metabolism ; Regeneration (physiology) ; Surface Properties ; Tissue engineering</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404485-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</cites><orcidid>0000-0003-0887-088X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404485$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404485$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38760003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Du, Huihui</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Liu, Feihong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K.</creatorcontrib><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials. A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Bacteria</subject><subject>bacterial killing</subject><subject>Disruption</subject><subject>enzyme‐like activity</subject><subject>Humans</subject><subject>Hydrides</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>Immune system</subject><subject>Osteogenesis - drug effects</subject><subject>osteogenic immune microenvironment</subject><subject>Oxidative Stress - drug effects</subject><subject>Palladium</subject><subject>Palladium - chemistry</subject><subject>palladium hydride film</subject><subject>Proton transfer</subject><subject>Protons</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regeneration (physiology)</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEotvClSOyxIVLFieOE-e4LC2taGmlhXM0sSdbV7G9tZ2F_Wv9dbjdtkhcOM2M_M3T-L0se1fQeUFp-QmUgXlJy4pWleAvslnByyKvaMtfZjPaMp63dSUOssMQbiilbU3r19kBE02dJjbL7r67LY7kCsYRlJ4MOd0prxWS1eQHkEiOLfSjtmuy0mYaI1h0UyCfQUb0GkbyTY8Pz2AVuQwR3RqtluTEeQNRO0vitXfT-ppceRfTuIRNnPzTxkJGvd1zbiALm7rfWoGNZLVLYoZoS86MmSySCy29Q7vV3lmDNoY32asBxoBvH-tR9vPk-MfyND-__Hq2XJznsuSC51CVquG1UL1sW-ybWmAPfcXlkFwqRTmwviwAeiYkwjDQpmQNFophTXnikB1lH_e6G-9uJwyxMzpITIY9eNExyuu6oZzRhH74B71xk7fpukSJWlBGG5Go-Z5KHwrB49BtvDbgd11Bu_tUu_tUu-dU08L7R9mpN6ie8acYE9DugV96xN1_5LrFl4vFX_E_fISzPQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Dongdong</creator><creator>Li, Mei</creator><creator>Chen, Shuhan</creator><creator>Du, Huihui</creator><creator>Zhong, Hua</creator><creator>Wu, Jun</creator><creator>Liu, Feihong</creator><creator>Zhang, Qian</creator><creator>Peng, Feng</creator><creator>Liu, Xuanyong</creator><creator>Yeung, Kelvin W.K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0887-088X</orcidid></search><sort><creationdate>20240801</creationdate><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><author>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Bacteria</topic><topic>bacterial killing</topic><topic>Disruption</topic><topic>enzyme‐like activity</topic><topic>Humans</topic><topic>Hydrides</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>Immune system</topic><topic>Osteogenesis - drug effects</topic><topic>osteogenic immune microenvironment</topic><topic>Oxidative Stress - drug effects</topic><topic>Palladium</topic><topic>Palladium - chemistry</topic><topic>palladium hydride film</topic><topic>Proton transfer</topic><topic>Protons</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regeneration (physiology)</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Du, Huihui</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Liu, Feihong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongdong</au><au>Li, Mei</au><au>Chen, Shuhan</au><au>Du, Huihui</au><au>Zhong, Hua</au><au>Wu, Jun</au><au>Liu, Feihong</au><au>Zhang, Qian</au><au>Peng, Feng</au><au>Liu, Xuanyong</au><au>Yeung, Kelvin W.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2404485</spage><epage>n/a</epage><pages>e2404485-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials. A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38760003</pmid><doi>10.1002/adma.202404485</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0887-088X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404485-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3056670530
source MEDLINE; Access via Wiley Online Library
subjects Animals
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antioxidants
Antioxidants - chemistry
Antioxidants - metabolism
Antioxidants - pharmacology
Bacteria
bacterial killing
Disruption
enzyme‐like activity
Humans
Hydrides
Hydrogen - chemistry
Hydrogen - metabolism
Immune system
Osteogenesis - drug effects
osteogenic immune microenvironment
Oxidative Stress - drug effects
Palladium
Palladium - chemistry
palladium hydride film
Proton transfer
Protons
Reactive Oxygen Species - metabolism
Regeneration (physiology)
Surface Properties
Tissue engineering
title Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Palladium%20Hydride%20Surface%20Enabling%20Simultaneous%20Bacterial%20Killing%20and%20Osteogenic%20Formation%20through%20Proton%20Capturing%20and%20Activation%20of%20Antioxidant%20System%20in%20Immune%20Microenvironments&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Dongdong&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2404485&rft.epage=n/a&rft.pages=e2404485-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404485&rft_dat=%3Cproquest_cross%3E3056670530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086803078&rft_id=info:pmid/38760003&rfr_iscdi=true