Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments
Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment o...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2404485-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2404485 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Zhang, Dongdong Li, Mei Chen, Shuhan Du, Huihui Zhong, Hua Wu, Jun Liu, Feihong Zhang, Qian Peng, Feng Liu, Xuanyong Yeung, Kelvin W.K. |
description | Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis. |
doi_str_mv | 10.1002/adma.202404485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056670530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056670530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEotvClSOyxIVLFieOE-e4LC2taGmlhXM0sSdbV7G9tZ2F_Wv9dbjdtkhcOM2M_M3T-L0se1fQeUFp-QmUgXlJy4pWleAvslnByyKvaMtfZjPaMp63dSUOssMQbiilbU3r19kBE02dJjbL7r67LY7kCsYRlJ4MOd0prxWS1eQHkEiOLfSjtmuy0mYaI1h0UyCfQUb0GkbyTY8Pz2AVuQwR3RqtluTEeQNRO0vitXfT-ppceRfTuIRNnPzTxkJGvd1zbiALm7rfWoGNZLVLYoZoS86MmSySCy29Q7vV3lmDNoY32asBxoBvH-tR9vPk-MfyND-__Hq2XJznsuSC51CVquG1UL1sW-ybWmAPfcXlkFwqRTmwviwAeiYkwjDQpmQNFophTXnikB1lH_e6G-9uJwyxMzpITIY9eNExyuu6oZzRhH74B71xk7fpukSJWlBGG5Go-Z5KHwrB49BtvDbgd11Bu_tUu_tUu-dU08L7R9mpN6ie8acYE9DugV96xN1_5LrFl4vFX_E_fISzPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086803078</pqid></control><display><type>article</type><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</creator><creatorcontrib>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</creatorcontrib><description>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404485</identifier><identifier>PMID: 38760003</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antioxidants ; Antioxidants - chemistry ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Bacteria ; bacterial killing ; Disruption ; enzyme‐like activity ; Humans ; Hydrides ; Hydrogen - chemistry ; Hydrogen - metabolism ; Immune system ; Osteogenesis - drug effects ; osteogenic immune microenvironment ; Oxidative Stress - drug effects ; Palladium ; Palladium - chemistry ; palladium hydride film ; Proton transfer ; Protons ; Reactive Oxygen Species - metabolism ; Regeneration (physiology) ; Surface Properties ; Tissue engineering</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404485-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</cites><orcidid>0000-0003-0887-088X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404485$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404485$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38760003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Du, Huihui</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Liu, Feihong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K.</creatorcontrib><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Bacteria</subject><subject>bacterial killing</subject><subject>Disruption</subject><subject>enzyme‐like activity</subject><subject>Humans</subject><subject>Hydrides</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>Immune system</subject><subject>Osteogenesis - drug effects</subject><subject>osteogenic immune microenvironment</subject><subject>Oxidative Stress - drug effects</subject><subject>Palladium</subject><subject>Palladium - chemistry</subject><subject>palladium hydride film</subject><subject>Proton transfer</subject><subject>Protons</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regeneration (physiology)</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEotvClSOyxIVLFieOE-e4LC2taGmlhXM0sSdbV7G9tZ2F_Wv9dbjdtkhcOM2M_M3T-L0se1fQeUFp-QmUgXlJy4pWleAvslnByyKvaMtfZjPaMp63dSUOssMQbiilbU3r19kBE02dJjbL7r67LY7kCsYRlJ4MOd0prxWS1eQHkEiOLfSjtmuy0mYaI1h0UyCfQUb0GkbyTY8Pz2AVuQwR3RqtluTEeQNRO0vitXfT-ppceRfTuIRNnPzTxkJGvd1zbiALm7rfWoGNZLVLYoZoS86MmSySCy29Q7vV3lmDNoY32asBxoBvH-tR9vPk-MfyND-__Hq2XJznsuSC51CVquG1UL1sW-ybWmAPfcXlkFwqRTmwviwAeiYkwjDQpmQNFophTXnikB1lH_e6G-9uJwyxMzpITIY9eNExyuu6oZzRhH74B71xk7fpukSJWlBGG5Go-Z5KHwrB49BtvDbgd11Bu_tUu_tUu-dU08L7R9mpN6ie8acYE9DugV96xN1_5LrFl4vFX_E_fISzPQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Dongdong</creator><creator>Li, Mei</creator><creator>Chen, Shuhan</creator><creator>Du, Huihui</creator><creator>Zhong, Hua</creator><creator>Wu, Jun</creator><creator>Liu, Feihong</creator><creator>Zhang, Qian</creator><creator>Peng, Feng</creator><creator>Liu, Xuanyong</creator><creator>Yeung, Kelvin W.K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0887-088X</orcidid></search><sort><creationdate>20240801</creationdate><title>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</title><author>Zhang, Dongdong ; Li, Mei ; Chen, Shuhan ; Du, Huihui ; Zhong, Hua ; Wu, Jun ; Liu, Feihong ; Zhang, Qian ; Peng, Feng ; Liu, Xuanyong ; Yeung, Kelvin W.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-a42d7568dbc99eb768ebab45cf409282f3b21aab38ceaff07237e1d3e605ab4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Bacteria</topic><topic>bacterial killing</topic><topic>Disruption</topic><topic>enzyme‐like activity</topic><topic>Humans</topic><topic>Hydrides</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>Immune system</topic><topic>Osteogenesis - drug effects</topic><topic>osteogenic immune microenvironment</topic><topic>Oxidative Stress - drug effects</topic><topic>Palladium</topic><topic>Palladium - chemistry</topic><topic>palladium hydride film</topic><topic>Proton transfer</topic><topic>Protons</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regeneration (physiology)</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Du, Huihui</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Liu, Feihong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Peng, Feng</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongdong</au><au>Li, Mei</au><au>Chen, Shuhan</au><au>Du, Huihui</au><au>Zhong, Hua</au><au>Wu, Jun</au><au>Liu, Feihong</au><au>Zhang, Qian</au><au>Peng, Feng</au><au>Liu, Xuanyong</au><au>Yeung, Kelvin W.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2404485</spage><epage>n/a</epage><pages>e2404485-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co‐transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen‐loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD‐like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
A palladium hydride (PdHx) film, fabricated on titanium implants, exhibits a lattice capable of capturing protons within the bacterial microenvironment, consequently inducing bacterial death. Furthermore, it mimics human antioxidant systems, reshaping the osteogenic immune microenvironment and promoting osteogenesis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38760003</pmid><doi>10.1002/adma.202404485</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0887-088X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2404485-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3056670530 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antioxidants Antioxidants - chemistry Antioxidants - metabolism Antioxidants - pharmacology Bacteria bacterial killing Disruption enzyme‐like activity Humans Hydrides Hydrogen - chemistry Hydrogen - metabolism Immune system Osteogenesis - drug effects osteogenic immune microenvironment Oxidative Stress - drug effects Palladium Palladium - chemistry palladium hydride film Proton transfer Protons Reactive Oxygen Species - metabolism Regeneration (physiology) Surface Properties Tissue engineering |
title | Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Palladium%20Hydride%20Surface%20Enabling%20Simultaneous%20Bacterial%20Killing%20and%20Osteogenic%20Formation%20through%20Proton%20Capturing%20and%20Activation%20of%20Antioxidant%20System%20in%20Immune%20Microenvironments&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Dongdong&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2404485&rft.epage=n/a&rft.pages=e2404485-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404485&rft_dat=%3Cproquest_cross%3E3056670530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086803078&rft_id=info:pmid/38760003&rfr_iscdi=true |