Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems
This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifo...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2024-04, Vol.109 (4-1), p.044205-044205, Article 044205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044205 |
---|---|
container_issue | 4-1 |
container_start_page | 044205 |
container_title | Physical review. E |
container_volume | 109 |
creator | Roy, Somnath Ray, Anirban Chowdhury, A Roy |
description | This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic and periodic zones. Our analytical predictions are thoroughly validated by numerical results. |
doi_str_mv | 10.1103/PhysRevE.109.044205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056669387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056669387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-b6c58779b083dcd5c82298a1210e8d23e040e26d15fac0df8b2f572144d938b93</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoVmo_gSA5etk6STa7WW9S_IcFRex5ySazdqWb1CQt9Nu70trTDDPvzRt-hFwxmDIG4vZ9uYsfuH2YMqimkOcc5Am54HkJGYAUp8c-lyMyifEbAFgBVcn4ORkJVUqphLwg7auPum-6bKZD0i6bLTE4usYQ12hSt0XqHTVL7eMdXbgtdqvOfdFlZy06qlMK2iQfIu0cdd4NS9SB6k3yzvd-E2ncxYR9vCRnrV5FnBzqmCweHz5nz9n87elldj_PDJcyZU1hpCrLqgElrLHSKM4rpRlngMpygZAD8sIy2WoDtlUNb2XJWZ7bSqimEmNys7-7Dv5ngzHVfRcNrlba4fBOLUAWRTFoy0Eq9lITfIwB23odul6HXc2g_mNc_zMeBlW9Zzy4rg8Bm6ZHe_T8ExW_8iV6lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056669387</pqid></control><display><type>article</type><title>Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems</title><source>American Physical Society Journals</source><creator>Roy, Somnath ; Ray, Anirban ; Chowdhury, A Roy</creator><creatorcontrib>Roy, Somnath ; Ray, Anirban ; Chowdhury, A Roy</creatorcontrib><description>This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic and periodic zones. Our analytical predictions are thoroughly validated by numerical results.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.109.044205</identifier><identifier>PMID: 38755835</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2024-04, Vol.109 (4-1), p.044205-044205, Article 044205</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-b6c58779b083dcd5c82298a1210e8d23e040e26d15fac0df8b2f572144d938b93</cites><orcidid>0000-0002-2049-3653 ; 0000-0002-9270-9978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38755835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Somnath</creatorcontrib><creatorcontrib>Ray, Anirban</creatorcontrib><creatorcontrib>Chowdhury, A Roy</creatorcontrib><title>Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic and periodic zones. Our analytical predictions are thoroughly validated by numerical results.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoVmo_gSA5etk6STa7WW9S_IcFRex5ySazdqWb1CQt9Nu70trTDDPvzRt-hFwxmDIG4vZ9uYsfuH2YMqimkOcc5Am54HkJGYAUp8c-lyMyifEbAFgBVcn4ORkJVUqphLwg7auPum-6bKZD0i6bLTE4usYQ12hSt0XqHTVL7eMdXbgtdqvOfdFlZy06qlMK2iQfIu0cdd4NS9SB6k3yzvd-E2ncxYR9vCRnrV5FnBzqmCweHz5nz9n87elldj_PDJcyZU1hpCrLqgElrLHSKM4rpRlngMpygZAD8sIy2WoDtlUNb2XJWZ7bSqimEmNys7-7Dv5ngzHVfRcNrlba4fBOLUAWRTFoy0Eq9lITfIwB23odul6HXc2g_mNc_zMeBlW9Zzy4rg8Bm6ZHe_T8ExW_8iV6lA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Roy, Somnath</creator><creator>Ray, Anirban</creator><creator>Chowdhury, A Roy</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2049-3653</orcidid><orcidid>https://orcid.org/0000-0002-9270-9978</orcidid></search><sort><creationdate>20240401</creationdate><title>Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems</title><author>Roy, Somnath ; Ray, Anirban ; Chowdhury, A Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-b6c58779b083dcd5c82298a1210e8d23e040e26d15fac0df8b2f572144d938b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Somnath</creatorcontrib><creatorcontrib>Ray, Anirban</creatorcontrib><creatorcontrib>Chowdhury, A Roy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Somnath</au><au>Ray, Anirban</au><au>Chowdhury, A Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>109</volume><issue>4-1</issue><spage>044205</spage><epage>044205</epage><pages>044205-044205</pages><artnum>044205</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic and periodic zones. Our analytical predictions are thoroughly validated by numerical results.</abstract><cop>United States</cop><pmid>38755835</pmid><doi>10.1103/PhysRevE.109.044205</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2049-3653</orcidid><orcidid>https://orcid.org/0000-0002-9270-9978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2024-04, Vol.109 (4-1), p.044205-044205, Article 044205 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_3056669387 |
source | American Physical Society Journals |
title | Kosambi-Cartan-Chern perspective on chaos: Unveiling hidden attractors in nonlinear autonomous systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kosambi-Cartan-Chern%20perspective%20on%20chaos:%20Unveiling%20hidden%20attractors%20in%20nonlinear%20autonomous%20systems&rft.jtitle=Physical%20review.%20E&rft.au=Roy,%20Somnath&rft.date=2024-04-01&rft.volume=109&rft.issue=4-1&rft.spage=044205&rft.epage=044205&rft.pages=044205-044205&rft.artnum=044205&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.109.044205&rft_dat=%3Cproquest_cross%3E3056669387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056669387&rft_id=info:pmid/38755835&rfr_iscdi=true |