In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface

Since their discovery, the infinite‐layer nickelates have been regarded as an appealing system for gaining deeper insights into high‐temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ${\ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-07, Vol.36 (29), p.e2401342-n/a
Hauptverfasser: Sun, Wenjie, Wang, Zhichao, Hao, Bo, Yan, Shengjun, Sun, Haoying, Gu, Zhengbin, Deng, Yu, Nie, Yuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2401342
container_title Advanced materials (Weinheim)
container_volume 36
creator Sun, Wenjie
Wang, Zhichao
Hao, Bo
Yan, Shengjun
Sun, Haoying
Gu, Zhengbin
Deng, Yu
Nie, Yuefeng
description Since their discovery, the infinite‐layer nickelates have been regarded as an appealing system for gaining deeper insights into high‐temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ${\mathrm{\text{in situ}}}$ reduction method is developed using atomic hydrogen as a reducing agent and is applied in the lanthanum nickelate system. The reduction parameters, including the reduction temperature (TR) and hydrogen pressure (PH), are systematically explored. It is found that the reduction window for achieving superconducting transition is quite wide, reaching nearly 80°C in TR and three orders of magnitude in PH when the reduction time is set to 30 min. And there exists an optimal PH for achieving the highest Tc if both TR and reduction time are fixed. More prominently, as confirmed by atomic force microscopy and scanning transmission electron microscopy, the atomically flat surface can be preserved during the in situ${\mathrm{\text{in situ}}}$ reduction process, providing advantages over the ex situ${\mathrm{\text{ex situ}}}$ CaH2 method for surface‐sensitive experiments. The superconducting infinite‐layer nickelate films can be synthesized fully in vacuo${\mathrm{\text{in vacuo}}}$ using atomic hydrogen, while the atomically flat surface has been confirmed by atomic force microscopy and scanning transmission electron microscopy. The in situ${\mathrm{\text{in situ}}}$ reduction method paves the way for surface‐sensitive electronic structural characterizations, such as angle‐resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy.
doi_str_mv 10.1002/adma.202401342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056669126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056669126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-de1ad77b820b9796c7475f6567de6a4cf1e85d0f2078012d3cc6f8bdf6a21b1d3</originalsourceid><addsrcrecordid>eNqF0ctO3DAUBmCralUG2m2XlaVuusn02PElXo5oB0YaaCXoOnJ8KYbEGexEaHZ9BJ6RJyFouEhsWJ3Nd34dnR-hLwTmBID-0LbTcwqUASkZfYdmhFNSMFD8PZqBKnmhBKv20H7OlwCgBIiPaK-sJGdMqhkKq4jPwjDiP8ltdNJD6CPuPT4bNy6ZPtrRDCH-w6voQwyDu_t_u9Zbl_BpMFeu1YPD5xch4mVou4xvwnCBF0PfBaPbdouXE5iiktfGfUIfvG6z-_w4D9Df5a_zw-Ni_ftodbhYF4byihbWEW2lbCoKjZJKGMkk94ILaZ3QzHjiKm7BU5AVEGpLY4SvGuuFpqQhtjxA33e5m9Rfjy4PdReycW2ro-vHXJfAhRCKUDHRb6_oZT-mOF03qekAxXZqvlMm9Tkn5-tNCp1O25pA_VBC_VBC_VzCtPD1MXZsOmef-dPXJ6B24Ca0bvtGXL34ebJ4Cb8HfraURQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082094126</pqid></control><display><type>article</type><title>In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface</title><source>Wiley Online Library All Journals</source><creator>Sun, Wenjie ; Wang, Zhichao ; Hao, Bo ; Yan, Shengjun ; Sun, Haoying ; Gu, Zhengbin ; Deng, Yu ; Nie, Yuefeng</creator><creatorcontrib>Sun, Wenjie ; Wang, Zhichao ; Hao, Bo ; Yan, Shengjun ; Sun, Haoying ; Gu, Zhengbin ; Deng, Yu ; Nie, Yuefeng</creatorcontrib><description>Since their discovery, the infinite‐layer nickelates have been regarded as an appealing system for gaining deeper insights into high‐temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ${\mathrm{\text{in situ}}}$ reduction method is developed using atomic hydrogen as a reducing agent and is applied in the lanthanum nickelate system. The reduction parameters, including the reduction temperature (TR) and hydrogen pressure (PH), are systematically explored. It is found that the reduction window for achieving superconducting transition is quite wide, reaching nearly 80°C in TR and three orders of magnitude in PH when the reduction time is set to 30 min. And there exists an optimal PH for achieving the highest Tc if both TR and reduction time are fixed. More prominently, as confirmed by atomic force microscopy and scanning transmission electron microscopy, the atomically flat surface can be preserved during the in situ${\mathrm{\text{in situ}}}$ reduction process, providing advantages over the ex situ${\mathrm{\text{ex situ}}}$ CaH2 method for surface‐sensitive experiments. The superconducting infinite‐layer nickelate films can be synthesized fully in vacuo${\mathrm{\text{in vacuo}}}$ using atomic hydrogen, while the atomically flat surface has been confirmed by atomic force microscopy and scanning transmission electron microscopy. The in situ${\mathrm{\text{in situ}}}$ reduction method paves the way for surface‐sensitive electronic structural characterizations, such as angle‐resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202401342</identifier><identifier>PMID: 38754479</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Flat surfaces ; high‐temperature superconductivity ; Hydrogen ; in situ${\mathrm{\text{in situ}}}$ synthesis ; infinite‐layer nickelates ; Lanthanum ; Microscopy ; molecular beam epitaxy ; Reducing agents ; Scanning transmission electron microscopy ; Superconductivity ; Thin films ; Ultrahigh vacuum</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2401342-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-de1ad77b820b9796c7475f6567de6a4cf1e85d0f2078012d3cc6f8bdf6a21b1d3</cites><orcidid>0000-0002-3449-5393 ; 0000-0003-2512-3907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202401342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202401342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38754479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Wang, Zhichao</creatorcontrib><creatorcontrib>Hao, Bo</creatorcontrib><creatorcontrib>Yan, Shengjun</creatorcontrib><creatorcontrib>Sun, Haoying</creatorcontrib><creatorcontrib>Gu, Zhengbin</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Nie, Yuefeng</creatorcontrib><title>In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Since their discovery, the infinite‐layer nickelates have been regarded as an appealing system for gaining deeper insights into high‐temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ${\mathrm{\text{in situ}}}$ reduction method is developed using atomic hydrogen as a reducing agent and is applied in the lanthanum nickelate system. The reduction parameters, including the reduction temperature (TR) and hydrogen pressure (PH), are systematically explored. It is found that the reduction window for achieving superconducting transition is quite wide, reaching nearly 80°C in TR and three orders of magnitude in PH when the reduction time is set to 30 min. And there exists an optimal PH for achieving the highest Tc if both TR and reduction time are fixed. More prominently, as confirmed by atomic force microscopy and scanning transmission electron microscopy, the atomically flat surface can be preserved during the in situ${\mathrm{\text{in situ}}}$ reduction process, providing advantages over the ex situ${\mathrm{\text{ex situ}}}$ CaH2 method for surface‐sensitive experiments. The superconducting infinite‐layer nickelate films can be synthesized fully in vacuo${\mathrm{\text{in vacuo}}}$ using atomic hydrogen, while the atomically flat surface has been confirmed by atomic force microscopy and scanning transmission electron microscopy. The in situ${\mathrm{\text{in situ}}}$ reduction method paves the way for surface‐sensitive electronic structural characterizations, such as angle‐resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy.</description><subject>Flat surfaces</subject><subject>high‐temperature superconductivity</subject><subject>Hydrogen</subject><subject>in situ${\mathrm{\text{in situ}}}$ synthesis</subject><subject>infinite‐layer nickelates</subject><subject>Lanthanum</subject><subject>Microscopy</subject><subject>molecular beam epitaxy</subject><subject>Reducing agents</subject><subject>Scanning transmission electron microscopy</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Ultrahigh vacuum</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctO3DAUBmCralUG2m2XlaVuusn02PElXo5oB0YaaCXoOnJ8KYbEGexEaHZ9BJ6RJyFouEhsWJ3Nd34dnR-hLwTmBID-0LbTcwqUASkZfYdmhFNSMFD8PZqBKnmhBKv20H7OlwCgBIiPaK-sJGdMqhkKq4jPwjDiP8ltdNJD6CPuPT4bNy6ZPtrRDCH-w6voQwyDu_t_u9Zbl_BpMFeu1YPD5xch4mVou4xvwnCBF0PfBaPbdouXE5iiktfGfUIfvG6z-_w4D9Df5a_zw-Ni_ftodbhYF4byihbWEW2lbCoKjZJKGMkk94ILaZ3QzHjiKm7BU5AVEGpLY4SvGuuFpqQhtjxA33e5m9Rfjy4PdReycW2ro-vHXJfAhRCKUDHRb6_oZT-mOF03qekAxXZqvlMm9Tkn5-tNCp1O25pA_VBC_VBC_VzCtPD1MXZsOmef-dPXJ6B24Ca0bvtGXL34ebJ4Cb8HfraURQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sun, Wenjie</creator><creator>Wang, Zhichao</creator><creator>Hao, Bo</creator><creator>Yan, Shengjun</creator><creator>Sun, Haoying</creator><creator>Gu, Zhengbin</creator><creator>Deng, Yu</creator><creator>Nie, Yuefeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3449-5393</orcidid><orcidid>https://orcid.org/0000-0003-2512-3907</orcidid></search><sort><creationdate>20240701</creationdate><title>In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface</title><author>Sun, Wenjie ; Wang, Zhichao ; Hao, Bo ; Yan, Shengjun ; Sun, Haoying ; Gu, Zhengbin ; Deng, Yu ; Nie, Yuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-de1ad77b820b9796c7475f6567de6a4cf1e85d0f2078012d3cc6f8bdf6a21b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Flat surfaces</topic><topic>high‐temperature superconductivity</topic><topic>Hydrogen</topic><topic>in situ${\mathrm{\text{in situ}}}$ synthesis</topic><topic>infinite‐layer nickelates</topic><topic>Lanthanum</topic><topic>Microscopy</topic><topic>molecular beam epitaxy</topic><topic>Reducing agents</topic><topic>Scanning transmission electron microscopy</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Wang, Zhichao</creatorcontrib><creatorcontrib>Hao, Bo</creatorcontrib><creatorcontrib>Yan, Shengjun</creatorcontrib><creatorcontrib>Sun, Haoying</creatorcontrib><creatorcontrib>Gu, Zhengbin</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Nie, Yuefeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wenjie</au><au>Wang, Zhichao</au><au>Hao, Bo</au><au>Yan, Shengjun</au><au>Sun, Haoying</au><au>Gu, Zhengbin</au><au>Deng, Yu</au><au>Nie, Yuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>29</issue><spage>e2401342</spage><epage>n/a</epage><pages>e2401342-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Since their discovery, the infinite‐layer nickelates have been regarded as an appealing system for gaining deeper insights into high‐temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ${\mathrm{\text{in situ}}}$ reduction method is developed using atomic hydrogen as a reducing agent and is applied in the lanthanum nickelate system. The reduction parameters, including the reduction temperature (TR) and hydrogen pressure (PH), are systematically explored. It is found that the reduction window for achieving superconducting transition is quite wide, reaching nearly 80°C in TR and three orders of magnitude in PH when the reduction time is set to 30 min. And there exists an optimal PH for achieving the highest Tc if both TR and reduction time are fixed. More prominently, as confirmed by atomic force microscopy and scanning transmission electron microscopy, the atomically flat surface can be preserved during the in situ${\mathrm{\text{in situ}}}$ reduction process, providing advantages over the ex situ${\mathrm{\text{ex situ}}}$ CaH2 method for surface‐sensitive experiments. The superconducting infinite‐layer nickelate films can be synthesized fully in vacuo${\mathrm{\text{in vacuo}}}$ using atomic hydrogen, while the atomically flat surface has been confirmed by atomic force microscopy and scanning transmission electron microscopy. The in situ${\mathrm{\text{in situ}}}$ reduction method paves the way for surface‐sensitive electronic structural characterizations, such as angle‐resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38754479</pmid><doi>10.1002/adma.202401342</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3449-5393</orcidid><orcidid>https://orcid.org/0000-0003-2512-3907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2401342-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3056669126
source Wiley Online Library All Journals
subjects Flat surfaces
high‐temperature superconductivity
Hydrogen
in situ${\mathrm{\text{in situ}}}$ synthesis
infinite‐layer nickelates
Lanthanum
Microscopy
molecular beam epitaxy
Reducing agents
Scanning transmission electron microscopy
Superconductivity
Thin films
Ultrahigh vacuum
title In Situ Preparation of Superconducting Infinite‐Layer Nickelate Thin Films with Atomically Flat Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Preparation%20of%20Superconducting%20Infinite%E2%80%90Layer%20Nickelate%20Thin%20Films%20with%20Atomically%20Flat%20Surface&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Sun,%20Wenjie&rft.date=2024-07-01&rft.volume=36&rft.issue=29&rft.spage=e2401342&rft.epage=n/a&rft.pages=e2401342-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202401342&rft_dat=%3Cproquest_cross%3E3056669126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082094126&rft_id=info:pmid/38754479&rfr_iscdi=true