Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2024-06, Vol.31 (6), p.818-833.e11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833.e11 |
---|---|
container_issue | 6 |
container_start_page | 818 |
container_title | Cell stem cell |
container_volume | 31 |
creator | Dao, Lan You, Zhen Lu, Lu Xu, Tianyang Sarkar, Avijite Kumer Zhu, Hui Liu, Miao Calandrelli, Riccardo Yoshida, George Lin, Pei Miao, Yifei Mierke, Sarah Kalva, Srijan Zhu, Haining Gu, Mingxia Vadivelu, Sudhakar Zhong, Sheng Huang, L. Frank Guo, Ziyuan |
description | The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
[Display omitted]
•Blood-brain barrier (BBB) assembloids resemble key features of the human BBB•Neuro-vascular crosstalk plays a pivotal role in the formation of BBB•Patient-derived BBB assembloids effectively model in vivo cavernoma phenotypes•BBB assembloids reveal SMC loss and disrupted neuro-vascular interactions in CCMs
Guo and colleagues created human blood-brain barrier (hBBB) assembloids using stem cell-derived brain and blood vessel organoids. These models mimic key blood-brain barrier (BBB) characteristics and reveal neuro-vascular interactions. Patient-derived assembloids replicated cerebral cavernous malformation (CCM) features, aiding in understanding CCM pathogenesis. This work advances BBB research and illuminates CCM mechanisms. |
doi_str_mv | 10.1016/j.stem.2024.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056668638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590924001462</els_id><sourcerecordid>3056668638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-1baad3e5b305fe57518397c229c2c6470760684c5757590897caf9b29badc8cb3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpqF23f6CHomMv60jaXWkFuQSTpAWHBNqehT5mXZldyZHWhvz7yNjxsTAgwTzzMvMg9I2SJSWUX2-XeYJxyQhrlqQUlR_QnHairaQQ4mP5y7qpWknkDH3OeUtIKygRn9CsLlDTMDFH28foYPBhg80Qo6tM0j5go1PykHAf06gnHwPWwWELCUp_wFYfIIW4z3jUw4XJuEz-24864Offq8pB8gdwOKaNDtG7_AVd9XrI8PX8LtDf-7s_q5_V-unh1-p2XVnW8amiRmtXQ2tq0vbQipZ2tRSWMWmZ5Y0gghPeNbZ0RLmtKz3dS8Ok0c521tQL9OOUu0vxZQ95UqPPFoZBByg7q5LLOe943RWUnVCbYs4JerVLftTpVVGijo7VVh0dq6NjRUoVpQv0_Zy_NyO4y8i71ALcnAAoVx6KR5Wth2DB-QR2Ui76_-W_AYSfjuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056668638</pqid></control><display><type>article</type><title>Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dao, Lan ; You, Zhen ; Lu, Lu ; Xu, Tianyang ; Sarkar, Avijite Kumer ; Zhu, Hui ; Liu, Miao ; Calandrelli, Riccardo ; Yoshida, George ; Lin, Pei ; Miao, Yifei ; Mierke, Sarah ; Kalva, Srijan ; Zhu, Haining ; Gu, Mingxia ; Vadivelu, Sudhakar ; Zhong, Sheng ; Huang, L. Frank ; Guo, Ziyuan</creator><creatorcontrib>Dao, Lan ; You, Zhen ; Lu, Lu ; Xu, Tianyang ; Sarkar, Avijite Kumer ; Zhu, Hui ; Liu, Miao ; Calandrelli, Riccardo ; Yoshida, George ; Lin, Pei ; Miao, Yifei ; Mierke, Sarah ; Kalva, Srijan ; Zhu, Haining ; Gu, Mingxia ; Vadivelu, Sudhakar ; Zhong, Sheng ; Huang, L. Frank ; Guo, Ziyuan</creatorcontrib><description>The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
[Display omitted]
•Blood-brain barrier (BBB) assembloids resemble key features of the human BBB•Neuro-vascular crosstalk plays a pivotal role in the formation of BBB•Patient-derived BBB assembloids effectively model in vivo cavernoma phenotypes•BBB assembloids reveal SMC loss and disrupted neuro-vascular interactions in CCMs
Guo and colleagues created human blood-brain barrier (hBBB) assembloids using stem cell-derived brain and blood vessel organoids. These models mimic key blood-brain barrier (BBB) characteristics and reveal neuro-vascular interactions. Patient-derived assembloids replicated cerebral cavernous malformation (CCM) features, aiding in understanding CCM pathogenesis. This work advances BBB research and illuminates CCM mechanisms.</description><identifier>ISSN: 1934-5909</identifier><identifier>ISSN: 1875-9777</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2024.04.019</identifier><identifier>PMID: 38754427</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>assembloids ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - pathology ; cerebral cavernous malformations ; Hemangioma, Cavernous, Central Nervous System - metabolism ; Hemangioma, Cavernous, Central Nervous System - pathology ; human blood-brain barrier ; human PSC-derived organoids ; Humans ; Models, Biological ; neuro-vascular development ; neuro-vascular interactions ; Organoids - metabolism ; Organoids - pathology ; Pluripotent Stem Cells - metabolism ; single-cell transcriptomics ; spatial transcriptomics</subject><ispartof>Cell stem cell, 2024-06, Vol.31 (6), p.818-833.e11</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-1baad3e5b305fe57518397c229c2c6470760684c5757590897caf9b29badc8cb3</citedby><cites>FETCH-LOGICAL-c286t-1baad3e5b305fe57518397c229c2c6470760684c5757590897caf9b29badc8cb3</cites><orcidid>0000-0002-2263-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2024.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38754427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dao, Lan</creatorcontrib><creatorcontrib>You, Zhen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Sarkar, Avijite Kumer</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Calandrelli, Riccardo</creatorcontrib><creatorcontrib>Yoshida, George</creatorcontrib><creatorcontrib>Lin, Pei</creatorcontrib><creatorcontrib>Miao, Yifei</creatorcontrib><creatorcontrib>Mierke, Sarah</creatorcontrib><creatorcontrib>Kalva, Srijan</creatorcontrib><creatorcontrib>Zhu, Haining</creatorcontrib><creatorcontrib>Gu, Mingxia</creatorcontrib><creatorcontrib>Vadivelu, Sudhakar</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><creatorcontrib>Huang, L. Frank</creatorcontrib><creatorcontrib>Guo, Ziyuan</creatorcontrib><title>Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
[Display omitted]
•Blood-brain barrier (BBB) assembloids resemble key features of the human BBB•Neuro-vascular crosstalk plays a pivotal role in the formation of BBB•Patient-derived BBB assembloids effectively model in vivo cavernoma phenotypes•BBB assembloids reveal SMC loss and disrupted neuro-vascular interactions in CCMs
Guo and colleagues created human blood-brain barrier (hBBB) assembloids using stem cell-derived brain and blood vessel organoids. These models mimic key blood-brain barrier (BBB) characteristics and reveal neuro-vascular interactions. Patient-derived assembloids replicated cerebral cavernous malformation (CCM) features, aiding in understanding CCM pathogenesis. This work advances BBB research and illuminates CCM mechanisms.</description><subject>assembloids</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - pathology</subject><subject>cerebral cavernous malformations</subject><subject>Hemangioma, Cavernous, Central Nervous System - metabolism</subject><subject>Hemangioma, Cavernous, Central Nervous System - pathology</subject><subject>human blood-brain barrier</subject><subject>human PSC-derived organoids</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>neuro-vascular development</subject><subject>neuro-vascular interactions</subject><subject>Organoids - metabolism</subject><subject>Organoids - pathology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>single-cell transcriptomics</subject><subject>spatial transcriptomics</subject><issn>1934-5909</issn><issn>1875-9777</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVpqF23f6CHomMv60jaXWkFuQSTpAWHBNqehT5mXZldyZHWhvz7yNjxsTAgwTzzMvMg9I2SJSWUX2-XeYJxyQhrlqQUlR_QnHairaQQ4mP5y7qpWknkDH3OeUtIKygRn9CsLlDTMDFH28foYPBhg80Qo6tM0j5go1PykHAf06gnHwPWwWELCUp_wFYfIIW4z3jUw4XJuEz-24864Offq8pB8gdwOKaNDtG7_AVd9XrI8PX8LtDf-7s_q5_V-unh1-p2XVnW8amiRmtXQ2tq0vbQipZ2tRSWMWmZ5Y0gghPeNbZ0RLmtKz3dS8Ok0c521tQL9OOUu0vxZQ95UqPPFoZBByg7q5LLOe943RWUnVCbYs4JerVLftTpVVGijo7VVh0dq6NjRUoVpQv0_Zy_NyO4y8i71ALcnAAoVx6KR5Wth2DB-QR2Ui76_-W_AYSfjuo</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Dao, Lan</creator><creator>You, Zhen</creator><creator>Lu, Lu</creator><creator>Xu, Tianyang</creator><creator>Sarkar, Avijite Kumer</creator><creator>Zhu, Hui</creator><creator>Liu, Miao</creator><creator>Calandrelli, Riccardo</creator><creator>Yoshida, George</creator><creator>Lin, Pei</creator><creator>Miao, Yifei</creator><creator>Mierke, Sarah</creator><creator>Kalva, Srijan</creator><creator>Zhu, Haining</creator><creator>Gu, Mingxia</creator><creator>Vadivelu, Sudhakar</creator><creator>Zhong, Sheng</creator><creator>Huang, L. Frank</creator><creator>Guo, Ziyuan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2263-0797</orcidid></search><sort><creationdate>20240606</creationdate><title>Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids</title><author>Dao, Lan ; You, Zhen ; Lu, Lu ; Xu, Tianyang ; Sarkar, Avijite Kumer ; Zhu, Hui ; Liu, Miao ; Calandrelli, Riccardo ; Yoshida, George ; Lin, Pei ; Miao, Yifei ; Mierke, Sarah ; Kalva, Srijan ; Zhu, Haining ; Gu, Mingxia ; Vadivelu, Sudhakar ; Zhong, Sheng ; Huang, L. Frank ; Guo, Ziyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-1baad3e5b305fe57518397c229c2c6470760684c5757590897caf9b29badc8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>assembloids</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - pathology</topic><topic>cerebral cavernous malformations</topic><topic>Hemangioma, Cavernous, Central Nervous System - metabolism</topic><topic>Hemangioma, Cavernous, Central Nervous System - pathology</topic><topic>human blood-brain barrier</topic><topic>human PSC-derived organoids</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>neuro-vascular development</topic><topic>neuro-vascular interactions</topic><topic>Organoids - metabolism</topic><topic>Organoids - pathology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>single-cell transcriptomics</topic><topic>spatial transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dao, Lan</creatorcontrib><creatorcontrib>You, Zhen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Sarkar, Avijite Kumer</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Calandrelli, Riccardo</creatorcontrib><creatorcontrib>Yoshida, George</creatorcontrib><creatorcontrib>Lin, Pei</creatorcontrib><creatorcontrib>Miao, Yifei</creatorcontrib><creatorcontrib>Mierke, Sarah</creatorcontrib><creatorcontrib>Kalva, Srijan</creatorcontrib><creatorcontrib>Zhu, Haining</creatorcontrib><creatorcontrib>Gu, Mingxia</creatorcontrib><creatorcontrib>Vadivelu, Sudhakar</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><creatorcontrib>Huang, L. Frank</creatorcontrib><creatorcontrib>Guo, Ziyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dao, Lan</au><au>You, Zhen</au><au>Lu, Lu</au><au>Xu, Tianyang</au><au>Sarkar, Avijite Kumer</au><au>Zhu, Hui</au><au>Liu, Miao</au><au>Calandrelli, Riccardo</au><au>Yoshida, George</au><au>Lin, Pei</au><au>Miao, Yifei</au><au>Mierke, Sarah</au><au>Kalva, Srijan</au><au>Zhu, Haining</au><au>Gu, Mingxia</au><au>Vadivelu, Sudhakar</au><au>Zhong, Sheng</au><au>Huang, L. Frank</au><au>Guo, Ziyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2024-06-06</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>818</spage><epage>833.e11</epage><pages>818-833.e11</pages><issn>1934-5909</issn><issn>1875-9777</issn><eissn>1875-9777</eissn><abstract>The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
[Display omitted]
•Blood-brain barrier (BBB) assembloids resemble key features of the human BBB•Neuro-vascular crosstalk plays a pivotal role in the formation of BBB•Patient-derived BBB assembloids effectively model in vivo cavernoma phenotypes•BBB assembloids reveal SMC loss and disrupted neuro-vascular interactions in CCMs
Guo and colleagues created human blood-brain barrier (hBBB) assembloids using stem cell-derived brain and blood vessel organoids. These models mimic key blood-brain barrier (BBB) characteristics and reveal neuro-vascular interactions. Patient-derived assembloids replicated cerebral cavernous malformation (CCM) features, aiding in understanding CCM pathogenesis. This work advances BBB research and illuminates CCM mechanisms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38754427</pmid><doi>10.1016/j.stem.2024.04.019</doi><orcidid>https://orcid.org/0000-0002-2263-0797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2024-06, Vol.31 (6), p.818-833.e11 |
issn | 1934-5909 1875-9777 1875-9777 |
language | eng |
recordid | cdi_proquest_miscellaneous_3056668638 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | assembloids Blood-Brain Barrier - metabolism Blood-Brain Barrier - pathology cerebral cavernous malformations Hemangioma, Cavernous, Central Nervous System - metabolism Hemangioma, Cavernous, Central Nervous System - pathology human blood-brain barrier human PSC-derived organoids Humans Models, Biological neuro-vascular development neuro-vascular interactions Organoids - metabolism Organoids - pathology Pluripotent Stem Cells - metabolism single-cell transcriptomics spatial transcriptomics |
title | Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20blood-brain%20barrier%20formation%20and%20cerebral%20cavernous%20malformations%20in%20human%20PSC-derived%20organoids&rft.jtitle=Cell%20stem%20cell&rft.au=Dao,%20Lan&rft.date=2024-06-06&rft.volume=31&rft.issue=6&rft.spage=818&rft.epage=833.e11&rft.pages=818-833.e11&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2024.04.019&rft_dat=%3Cproquest_cross%3E3056668638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056668638&rft_id=info:pmid/38754427&rft_els_id=S1934590924001462&rfr_iscdi=true |