Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging
The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in w...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2024-07, Vol.30 (41), p.e202401426-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | e202401426 |
container_title | Chemistry : a European journal |
container_volume | 30 |
creator | Zhang, Qiaona Cui, Fengyao Dang, Xiaoman Wang, Qi Li, Zheng‐Yi Sun, Xiao‐Qiang Xiao, Tangxin |
description | The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5
⊃
${ \supset }$
G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5
⊃
${ \supset }$
G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.
Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging. |
doi_str_mv | 10.1002/chem.202401426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056663704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082612740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</originalsourceid><addsrcrecordid>eNqF0btu2zAUBmAiaJC4btaOBYEuXeQcXkRKY2E7cQAFGZwio0DRR7YMXVxScuEtj5BnzJOUqdMU6JKJJPjxBw9-Qj4zmDAAfmk32Ew4cAlMcnVCRizmLBJaxR_ICFKpIxWL9Jx89H4LAKkS4oyci0THWiQwIsNy2DnTdDXaoTaOLvHngG1fmZpm1XrTPz8-LYzbo--rdk2XB99j42nZOTrtWt-7wf65eNhUPdJsPqMz3FcWqWlXNDN9iKJXAaDbuSrsbxqzDsdP5LQ0tceL13VMflzN76eLKLu7vpl-zyIreKIig7GFFFOj9KqwHG2KhS0TK7QUquCYcM2hLFlRImgmTawZ57GRnBVSBi7G5Nsxd-e6MJfv86byFuvatNgNPhcQK6WEBhno1__othtcG34XVMIV41pCUJOjsq7z3mGZh7ka4w45g_ylkPylkPytkPDgy2vsUDS4euN_GwggPYJfVY2Hd-Ly6WJ--y_8NxKSmXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082612740</pqid></control><display><type>article</type><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</creator><creatorcontrib>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</creatorcontrib><description>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5
⊃
${ \supset }$
G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5
⊃
${ \supset }$
G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.
Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202401426</identifier><identifier>PMID: 38757380</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Energy harvesting ; Energy transfer ; Fabrication ; Fingerprints ; Fluorescent dyes ; Fluorescent indicators ; Imaging ; Latent fingerprints ; LFP imaging ; Light ; Light emission ; Light emitting diodes ; light-harvesting system ; Nanoparticles ; pillararene ; Self-assembly ; Sulforhodamine ; Thiadiazoles ; White light ; white light emission</subject><ispartof>Chemistry : a European journal, 2024-07, Vol.30 (41), p.e202401426-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</cites><orcidid>0000-0002-2864-9587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202401426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202401426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38757380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qiaona</creatorcontrib><creatorcontrib>Cui, Fengyao</creatorcontrib><creatorcontrib>Dang, Xiaoman</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Zheng‐Yi</creatorcontrib><creatorcontrib>Sun, Xiao‐Qiang</creatorcontrib><creatorcontrib>Xiao, Tangxin</creatorcontrib><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5
⊃
${ \supset }$
G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5
⊃
${ \supset }$
G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.
Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</description><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>Fabrication</subject><subject>Fingerprints</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>Imaging</subject><subject>Latent fingerprints</subject><subject>LFP imaging</subject><subject>Light</subject><subject>Light emission</subject><subject>Light emitting diodes</subject><subject>light-harvesting system</subject><subject>Nanoparticles</subject><subject>pillararene</subject><subject>Self-assembly</subject><subject>Sulforhodamine</subject><subject>Thiadiazoles</subject><subject>White light</subject><subject>white light emission</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0btu2zAUBmAiaJC4btaOBYEuXeQcXkRKY2E7cQAFGZwio0DRR7YMXVxScuEtj5BnzJOUqdMU6JKJJPjxBw9-Qj4zmDAAfmk32Ew4cAlMcnVCRizmLBJaxR_ICFKpIxWL9Jx89H4LAKkS4oyci0THWiQwIsNy2DnTdDXaoTaOLvHngG1fmZpm1XrTPz8-LYzbo--rdk2XB99j42nZOTrtWt-7wf65eNhUPdJsPqMz3FcWqWlXNDN9iKJXAaDbuSrsbxqzDsdP5LQ0tceL13VMflzN76eLKLu7vpl-zyIreKIig7GFFFOj9KqwHG2KhS0TK7QUquCYcM2hLFlRImgmTawZ57GRnBVSBi7G5Nsxd-e6MJfv86byFuvatNgNPhcQK6WEBhno1__othtcG34XVMIV41pCUJOjsq7z3mGZh7ka4w45g_ylkPylkPytkPDgy2vsUDS4euN_GwggPYJfVY2Hd-Ly6WJ--y_8NxKSmXQ</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Zhang, Qiaona</creator><creator>Cui, Fengyao</creator><creator>Dang, Xiaoman</creator><creator>Wang, Qi</creator><creator>Li, Zheng‐Yi</creator><creator>Sun, Xiao‐Qiang</creator><creator>Xiao, Tangxin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2864-9587</orcidid></search><sort><creationdate>20240719</creationdate><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><author>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>Fabrication</topic><topic>Fingerprints</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>Imaging</topic><topic>Latent fingerprints</topic><topic>LFP imaging</topic><topic>Light</topic><topic>Light emission</topic><topic>Light emitting diodes</topic><topic>light-harvesting system</topic><topic>Nanoparticles</topic><topic>pillararene</topic><topic>Self-assembly</topic><topic>Sulforhodamine</topic><topic>Thiadiazoles</topic><topic>White light</topic><topic>white light emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiaona</creatorcontrib><creatorcontrib>Cui, Fengyao</creatorcontrib><creatorcontrib>Dang, Xiaoman</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Zheng‐Yi</creatorcontrib><creatorcontrib>Sun, Xiao‐Qiang</creatorcontrib><creatorcontrib>Xiao, Tangxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiaona</au><au>Cui, Fengyao</au><au>Dang, Xiaoman</au><au>Wang, Qi</au><au>Li, Zheng‐Yi</au><au>Sun, Xiao‐Qiang</au><au>Xiao, Tangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>30</volume><issue>41</issue><spage>e202401426</spage><epage>n/a</epage><pages>e202401426-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5
⊃
${ \supset }$
G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5
⊃
${ \supset }$
G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.
Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38757380</pmid><doi>10.1002/chem.202401426</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2864-9587</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2024-07, Vol.30 (41), p.e202401426-n/a |
issn | 0947-6539 1521-3765 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_3056663704 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Energy harvesting Energy transfer Fabrication Fingerprints Fluorescent dyes Fluorescent indicators Imaging Latent fingerprints LFP imaging Light Light emission Light emitting diodes light-harvesting system Nanoparticles pillararene Self-assembly Sulforhodamine Thiadiazoles White light white light emission |
title | Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Sequential%20Light%E2%80%90Harvesting%20Systems%20for%20Constructing%20White%20LED%20Device%20and%20Latent%20Fingerprint%20Imaging&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Zhang,%20Qiaona&rft.date=2024-07-19&rft.volume=30&rft.issue=41&rft.spage=e202401426&rft.epage=n/a&rft.pages=e202401426-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202401426&rft_dat=%3Cproquest_cross%3E3082612740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082612740&rft_id=info:pmid/38757380&rfr_iscdi=true |