Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging

The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-07, Vol.30 (41), p.e202401426-n/a
Hauptverfasser: Zhang, Qiaona, Cui, Fengyao, Dang, Xiaoman, Wang, Qi, Li, Zheng‐Yi, Sun, Xiao‐Qiang, Xiao, Tangxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page e202401426
container_title Chemistry : a European journal
container_volume 30
creator Zhang, Qiaona
Cui, Fengyao
Dang, Xiaoman
Wang, Qi
Li, Zheng‐Yi
Sun, Xiao‐Qiang
Xiao, Tangxin
description The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5 ⊃ ${ \supset }$ G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5 ⊃ ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs. Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.
doi_str_mv 10.1002/chem.202401426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3056663704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082612740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</originalsourceid><addsrcrecordid>eNqF0btu2zAUBmAiaJC4btaOBYEuXeQcXkRKY2E7cQAFGZwio0DRR7YMXVxScuEtj5BnzJOUqdMU6JKJJPjxBw9-Qj4zmDAAfmk32Ew4cAlMcnVCRizmLBJaxR_ICFKpIxWL9Jx89H4LAKkS4oyci0THWiQwIsNy2DnTdDXaoTaOLvHngG1fmZpm1XrTPz8-LYzbo--rdk2XB99j42nZOTrtWt-7wf65eNhUPdJsPqMz3FcWqWlXNDN9iKJXAaDbuSrsbxqzDsdP5LQ0tceL13VMflzN76eLKLu7vpl-zyIreKIig7GFFFOj9KqwHG2KhS0TK7QUquCYcM2hLFlRImgmTawZ57GRnBVSBi7G5Nsxd-e6MJfv86byFuvatNgNPhcQK6WEBhno1__othtcG34XVMIV41pCUJOjsq7z3mGZh7ka4w45g_ylkPylkPytkPDgy2vsUDS4euN_GwggPYJfVY2Hd-Ly6WJ--y_8NxKSmXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082612740</pqid></control><display><type>article</type><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</creator><creatorcontrib>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</creatorcontrib><description>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5 ⊃ ${ \supset }$ G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5 ⊃ ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs. Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202401426</identifier><identifier>PMID: 38757380</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Energy harvesting ; Energy transfer ; Fabrication ; Fingerprints ; Fluorescent dyes ; Fluorescent indicators ; Imaging ; Latent fingerprints ; LFP imaging ; Light ; Light emission ; Light emitting diodes ; light-harvesting system ; Nanoparticles ; pillararene ; Self-assembly ; Sulforhodamine ; Thiadiazoles ; White light ; white light emission</subject><ispartof>Chemistry : a European journal, 2024-07, Vol.30 (41), p.e202401426-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</cites><orcidid>0000-0002-2864-9587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202401426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202401426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38757380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qiaona</creatorcontrib><creatorcontrib>Cui, Fengyao</creatorcontrib><creatorcontrib>Dang, Xiaoman</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Zheng‐Yi</creatorcontrib><creatorcontrib>Sun, Xiao‐Qiang</creatorcontrib><creatorcontrib>Xiao, Tangxin</creatorcontrib><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5 ⊃ ${ \supset }$ G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5 ⊃ ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs. Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</description><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>Fabrication</subject><subject>Fingerprints</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>Imaging</subject><subject>Latent fingerprints</subject><subject>LFP imaging</subject><subject>Light</subject><subject>Light emission</subject><subject>Light emitting diodes</subject><subject>light-harvesting system</subject><subject>Nanoparticles</subject><subject>pillararene</subject><subject>Self-assembly</subject><subject>Sulforhodamine</subject><subject>Thiadiazoles</subject><subject>White light</subject><subject>white light emission</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0btu2zAUBmAiaJC4btaOBYEuXeQcXkRKY2E7cQAFGZwio0DRR7YMXVxScuEtj5BnzJOUqdMU6JKJJPjxBw9-Qj4zmDAAfmk32Ew4cAlMcnVCRizmLBJaxR_ICFKpIxWL9Jx89H4LAKkS4oyci0THWiQwIsNy2DnTdDXaoTaOLvHngG1fmZpm1XrTPz8-LYzbo--rdk2XB99j42nZOTrtWt-7wf65eNhUPdJsPqMz3FcWqWlXNDN9iKJXAaDbuSrsbxqzDsdP5LQ0tceL13VMflzN76eLKLu7vpl-zyIreKIig7GFFFOj9KqwHG2KhS0TK7QUquCYcM2hLFlRImgmTawZ57GRnBVSBi7G5Nsxd-e6MJfv86byFuvatNgNPhcQK6WEBhno1__othtcG34XVMIV41pCUJOjsq7z3mGZh7ka4w45g_ylkPylkPytkPDgy2vsUDS4euN_GwggPYJfVY2Hd-Ly6WJ--y_8NxKSmXQ</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Zhang, Qiaona</creator><creator>Cui, Fengyao</creator><creator>Dang, Xiaoman</creator><creator>Wang, Qi</creator><creator>Li, Zheng‐Yi</creator><creator>Sun, Xiao‐Qiang</creator><creator>Xiao, Tangxin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2864-9587</orcidid></search><sort><creationdate>20240719</creationdate><title>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</title><author>Zhang, Qiaona ; Cui, Fengyao ; Dang, Xiaoman ; Wang, Qi ; Li, Zheng‐Yi ; Sun, Xiao‐Qiang ; Xiao, Tangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3286-ae5c09e9a67dbc2ec9ebcf8c37436b2e82720ff1bfe0714a571225a421b442ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>Fabrication</topic><topic>Fingerprints</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>Imaging</topic><topic>Latent fingerprints</topic><topic>LFP imaging</topic><topic>Light</topic><topic>Light emission</topic><topic>Light emitting diodes</topic><topic>light-harvesting system</topic><topic>Nanoparticles</topic><topic>pillararene</topic><topic>Self-assembly</topic><topic>Sulforhodamine</topic><topic>Thiadiazoles</topic><topic>White light</topic><topic>white light emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiaona</creatorcontrib><creatorcontrib>Cui, Fengyao</creatorcontrib><creatorcontrib>Dang, Xiaoman</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Zheng‐Yi</creatorcontrib><creatorcontrib>Sun, Xiao‐Qiang</creatorcontrib><creatorcontrib>Xiao, Tangxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiaona</au><au>Cui, Fengyao</au><au>Dang, Xiaoman</au><au>Wang, Qi</au><au>Li, Zheng‐Yi</au><au>Sun, Xiao‐Qiang</au><au>Xiao, Tangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>30</volume><issue>41</issue><spage>e202401426</spage><epage>n/a</epage><pages>e202401426-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>The fabrication of supramolecular light‐harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non‐covalent self‐assembly of a sequential LHS by pillar[5]arene‐based host‐guest interaction in water and its applications in white light‐emitting diode (LED) device and latent fingerprint imaging. The host‐guest complex WP5 ⊃ ${ \supset }$ G self‐assembles into nanoparticles in water and shows enhanced aggregation‐induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7‐di(2‐thienyl)‐benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white‐light emission when the molar ratio of WP5 ⊃ ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white‐light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high‐resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host‐guest interaction and explored its multi‐functional applications in white‐light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs. Based on the non‐covalent self‐assembly of water‐soluble pillar[5]arenes, using WP5⸧G as the energy donor and commercially available dyes DBT (acceptor I) and SR101 (acceptor II) as the energy acceptor, a supramolecular light‐harvesting system with sequential energy transfer was successfully constructed. Significantly, this system shows attractive applications in white light‐emitting diode (LED) devices and latent fingerprint (LFP) imaging.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38757380</pmid><doi>10.1002/chem.202401426</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2864-9587</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2024-07, Vol.30 (41), p.e202401426-n/a
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3056663704
source Wiley Online Library Journals Frontfile Complete
subjects Energy harvesting
Energy transfer
Fabrication
Fingerprints
Fluorescent dyes
Fluorescent indicators
Imaging
Latent fingerprints
LFP imaging
Light
Light emission
Light emitting diodes
light-harvesting system
Nanoparticles
pillararene
Self-assembly
Sulforhodamine
Thiadiazoles
White light
white light emission
title Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Sequential%20Light%E2%80%90Harvesting%20Systems%20for%20Constructing%20White%20LED%20Device%20and%20Latent%20Fingerprint%20Imaging&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Zhang,%20Qiaona&rft.date=2024-07-19&rft.volume=30&rft.issue=41&rft.spage=e202401426&rft.epage=n/a&rft.pages=e202401426-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202401426&rft_dat=%3Cproquest_cross%3E3082612740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082612740&rft_id=info:pmid/38757380&rfr_iscdi=true