Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions
Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections foll...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (21), p.4335-4352 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4352 |
---|---|
container_issue | 21 |
container_start_page | 4335 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 128 |
creator | Wu, Haoyang Payne, A. Mark Pang, Hao-Wei Menon, Angiras Grambow, Colin A. Ranasinghe, Duminda S. Dong, Xiaorui Grinberg Dana, Alon Green, William H. |
description | Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies. |
doi_str_mv | 10.1021/acs.jpca.4c00949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055893000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055893000</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</originalsourceid><addsrcrecordid>eNp1kU-P0zAQxSMEYpeFOyfk4yKR4j9x4nAr1QKVFiFQOUcTe6J6FcfBdhb6Sfi6uNvCjZPHM7_3pJlXFC8ZXTHK2VvQcXU3a1hVmtK2ah8Vl0xyWkrO5ONcU9WWshbtRfEsxjtKKRO8elpcCNVIrmR1Wfze-Z8QDFlrvQRISL4uMKXFkc-o9zBZDSPZ7TE4r_fobEzh8I5cs9fk5lfCKdp-RLJ184gOpwTJ-onAZMjGuxmCjfnrB_Le59baGJvsvU2HPA0B9RGOD_Q2eoPRWU2-IZz6z4snA4wRX5zfq-L7h5vd5lN5--XjdrO-LUE0KpWKC05FXzdNozmjqJVqDGN1baCnIFXLhFG8H9q-5i1HLmrOatNWrAEA2Qziqrg--c7B_1gwpi4vqXEcYUK_xE5QmV1EPl1G6QnVwccYcOjmYB2EQ8dod4yjy3F0xzi6cxxZ8ursvvQOzT_B3_tn4M0JeJD6JUx52f_7_QGcR5hD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055893000</pqid></control><display><type>article</type><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><source>ACS Publications</source><creator>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</creator><creatorcontrib>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</creatorcontrib><description>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c00949</identifier><identifier>PMID: 38752854</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (21), p.4335-4352</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</citedby><cites>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</cites><orcidid>0000-0003-0144-5696 ; 0000-0001-7545-8719 ; 0000-0003-2603-9694 ; 0000-0001-9381-7500 ; 0000-0002-0180-1796 ; 0000-0002-0644-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c00949$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c00949$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Pang, Hao-Wei</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Grinberg Dana, Alon</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU-P0zAQxSMEYpeFOyfk4yKR4j9x4nAr1QKVFiFQOUcTe6J6FcfBdhb6Sfi6uNvCjZPHM7_3pJlXFC8ZXTHK2VvQcXU3a1hVmtK2ah8Vl0xyWkrO5ONcU9WWshbtRfEsxjtKKRO8elpcCNVIrmR1Wfze-Z8QDFlrvQRISL4uMKXFkc-o9zBZDSPZ7TE4r_fobEzh8I5cs9fk5lfCKdp-RLJ184gOpwTJ-onAZMjGuxmCjfnrB_Le59baGJvsvU2HPA0B9RGOD_Q2eoPRWU2-IZz6z4snA4wRX5zfq-L7h5vd5lN5--XjdrO-LUE0KpWKC05FXzdNozmjqJVqDGN1baCnIFXLhFG8H9q-5i1HLmrOatNWrAEA2Qziqrg--c7B_1gwpi4vqXEcYUK_xE5QmV1EPl1G6QnVwccYcOjmYB2EQ8dod4yjy3F0xzi6cxxZ8ursvvQOzT_B3_tn4M0JeJD6JUx52f_7_QGcR5hD</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Wu, Haoyang</creator><creator>Payne, A. Mark</creator><creator>Pang, Hao-Wei</creator><creator>Menon, Angiras</creator><creator>Grambow, Colin A.</creator><creator>Ranasinghe, Duminda S.</creator><creator>Dong, Xiaorui</creator><creator>Grinberg Dana, Alon</creator><creator>Green, William H.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-9381-7500</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid></search><sort><creationdate>20240530</creationdate><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><author>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Pang, Hao-Wei</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Grinberg Dana, Alon</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Haoyang</au><au>Payne, A. Mark</au><au>Pang, Hao-Wei</au><au>Menon, Angiras</au><au>Grambow, Colin A.</au><au>Ranasinghe, Duminda S.</au><au>Dong, Xiaorui</au><au>Grinberg Dana, Alon</au><au>Green, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>128</volume><issue>21</issue><spage>4335</spage><epage>4352</epage><pages>4335-4352</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38752854</pmid><doi>10.1021/acs.jpca.4c00949</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-9381-7500</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (21), p.4335-4352 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_3055893000 |
source | ACS Publications |
subjects | A: New Tools and Methods in Experiment and Theory |
title | Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Accurate%20Quantum%20Mechanical%20Thermochemistry:%20(1)%20Extensible%20Implementation%20and%20Comparison%20of%20Bond%20Additivity%20Corrections%20and%20Isodesmic%20Reactions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wu,%20Haoyang&rft.date=2024-05-30&rft.volume=128&rft.issue=21&rft.spage=4335&rft.epage=4352&rft.pages=4335-4352&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c00949&rft_dat=%3Cproquest_cross%3E3055893000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055893000&rft_id=info:pmid/38752854&rfr_iscdi=true |