Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions

Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections foll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (21), p.4335-4352
Hauptverfasser: Wu, Haoyang, Payne, A. Mark, Pang, Hao-Wei, Menon, Angiras, Grambow, Colin A., Ranasinghe, Duminda S., Dong, Xiaorui, Grinberg Dana, Alon, Green, William H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4352
container_issue 21
container_start_page 4335
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 128
creator Wu, Haoyang
Payne, A. Mark
Pang, Hao-Wei
Menon, Angiras
Grambow, Colin A.
Ranasinghe, Duminda S.
Dong, Xiaorui
Grinberg Dana, Alon
Green, William H.
description Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.
doi_str_mv 10.1021/acs.jpca.4c00949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055893000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055893000</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</originalsourceid><addsrcrecordid>eNp1kU-P0zAQxSMEYpeFOyfk4yKR4j9x4nAr1QKVFiFQOUcTe6J6FcfBdhb6Sfi6uNvCjZPHM7_3pJlXFC8ZXTHK2VvQcXU3a1hVmtK2ah8Vl0xyWkrO5ONcU9WWshbtRfEsxjtKKRO8elpcCNVIrmR1Wfze-Z8QDFlrvQRISL4uMKXFkc-o9zBZDSPZ7TE4r_fobEzh8I5cs9fk5lfCKdp-RLJ184gOpwTJ-onAZMjGuxmCjfnrB_Le59baGJvsvU2HPA0B9RGOD_Q2eoPRWU2-IZz6z4snA4wRX5zfq-L7h5vd5lN5--XjdrO-LUE0KpWKC05FXzdNozmjqJVqDGN1baCnIFXLhFG8H9q-5i1HLmrOatNWrAEA2Qziqrg--c7B_1gwpi4vqXEcYUK_xE5QmV1EPl1G6QnVwccYcOjmYB2EQ8dod4yjy3F0xzi6cxxZ8ursvvQOzT_B3_tn4M0JeJD6JUx52f_7_QGcR5hD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055893000</pqid></control><display><type>article</type><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><source>ACS Publications</source><creator>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</creator><creatorcontrib>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</creatorcontrib><description>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c00949</identifier><identifier>PMID: 38752854</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2024-05, Vol.128 (21), p.4335-4352</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</citedby><cites>FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</cites><orcidid>0000-0003-0144-5696 ; 0000-0001-7545-8719 ; 0000-0003-2603-9694 ; 0000-0001-9381-7500 ; 0000-0002-0180-1796 ; 0000-0002-0644-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c00949$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c00949$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Pang, Hao-Wei</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Grinberg Dana, Alon</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU-P0zAQxSMEYpeFOyfk4yKR4j9x4nAr1QKVFiFQOUcTe6J6FcfBdhb6Sfi6uNvCjZPHM7_3pJlXFC8ZXTHK2VvQcXU3a1hVmtK2ah8Vl0xyWkrO5ONcU9WWshbtRfEsxjtKKRO8elpcCNVIrmR1Wfze-Z8QDFlrvQRISL4uMKXFkc-o9zBZDSPZ7TE4r_fobEzh8I5cs9fk5lfCKdp-RLJ184gOpwTJ-onAZMjGuxmCjfnrB_Le59baGJvsvU2HPA0B9RGOD_Q2eoPRWU2-IZz6z4snA4wRX5zfq-L7h5vd5lN5--XjdrO-LUE0KpWKC05FXzdNozmjqJVqDGN1baCnIFXLhFG8H9q-5i1HLmrOatNWrAEA2Qziqrg--c7B_1gwpi4vqXEcYUK_xE5QmV1EPl1G6QnVwccYcOjmYB2EQ8dod4yjy3F0xzi6cxxZ8ursvvQOzT_B3_tn4M0JeJD6JUx52f_7_QGcR5hD</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Wu, Haoyang</creator><creator>Payne, A. Mark</creator><creator>Pang, Hao-Wei</creator><creator>Menon, Angiras</creator><creator>Grambow, Colin A.</creator><creator>Ranasinghe, Duminda S.</creator><creator>Dong, Xiaorui</creator><creator>Grinberg Dana, Alon</creator><creator>Green, William H.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-9381-7500</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid></search><sort><creationdate>20240530</creationdate><title>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</title><author>Wu, Haoyang ; Payne, A. Mark ; Pang, Hao-Wei ; Menon, Angiras ; Grambow, Colin A. ; Ranasinghe, Duminda S. ; Dong, Xiaorui ; Grinberg Dana, Alon ; Green, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-823203b6777c210ec887d1166dab0a58913d82bf9b6292e236216d9417aaa57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Payne, A. Mark</creatorcontrib><creatorcontrib>Pang, Hao-Wei</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Grambow, Colin A.</creatorcontrib><creatorcontrib>Ranasinghe, Duminda S.</creatorcontrib><creatorcontrib>Dong, Xiaorui</creatorcontrib><creatorcontrib>Grinberg Dana, Alon</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Haoyang</au><au>Payne, A. Mark</au><au>Pang, Hao-Wei</au><au>Menon, Angiras</au><au>Grambow, Colin A.</au><au>Ranasinghe, Duminda S.</au><au>Dong, Xiaorui</au><au>Grinberg Dana, Alon</au><au>Green, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>128</volume><issue>21</issue><spage>4335</spage><epage>4352</epage><pages>4335-4352</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Obtaining accurate enthalpies of formation of chemical species, ΔH f, often requires empirical corrections that connect the results of quantum mechanical (QM) calculations with the experimental enthalpies of elements in their standard state. One approach is to use atomization energy corrections followed by bond additivity corrections (BACs), such as those defined by Petersson et al. or Anantharaman and Melius. Another approach is to utilize isodesmic reactions (IDRs) as shown by Buerger et al. We implement both approaches in Arkane, an open-source software that can calculate species thermochemistry using results from various QM software packages. In this work, we collect 421 reference species from the literature to derive ΔH f corrections and fit atomization energy corrections and BACs for 15 commonly used model chemistries. We find that both types of BACs yield similar accuracy, although Anantharaman- and Melius-type BACs appear to generalize better. Furthermore, BACs tend to achieve better accuracy than IDRs for commonly used model chemistries, and IDRs can be less robust because of the sensitivity to the chosen reference species and reactions. Overall, Anantharaman- and Melius-type BACs are our recommended approach for achieving accurate QM corrections for enthalpies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38752854</pmid><doi>10.1021/acs.jpca.4c00949</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0144-5696</orcidid><orcidid>https://orcid.org/0000-0001-7545-8719</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0001-9381-7500</orcidid><orcidid>https://orcid.org/0000-0002-0180-1796</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (21), p.4335-4352
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_3055893000
source ACS Publications
subjects A: New Tools and Methods in Experiment and Theory
title Toward Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Accurate%20Quantum%20Mechanical%20Thermochemistry:%20(1)%20Extensible%20Implementation%20and%20Comparison%20of%20Bond%20Additivity%20Corrections%20and%20Isodesmic%20Reactions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wu,%20Haoyang&rft.date=2024-05-30&rft.volume=128&rft.issue=21&rft.spage=4335&rft.epage=4352&rft.pages=4335-4352&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c00949&rft_dat=%3Cproquest_cross%3E3055893000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055893000&rft_id=info:pmid/38752854&rfr_iscdi=true