Clinical impact of proximal fixation augmentation using the Najuta thoracic fenestrated stent graft during endovascular treatment for distal aortic arch aneurysm

Prevention of late type Ia endoleaks is the main concern in thoracic endovascular aortic aneurysm repair (TEVAR) for thoracic aortic aneurysm. Since 2017, we have performed zone 0 TEVAR with proximal fixation augmentation using a Najuta thoracic fenestrated stent graft in addition to zone 2 TEVAR fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2024-10, Vol.80 (4), p.949-956
Hauptverfasser: Fukushima, Soichiro, Ohki, Takao, Tachihara, Hiromasa, Shukuzawa, Kota, Ohmori, Makiko, Ozawa, Hirotsugu, Shirouzu, Miyo, Nakagawa, Hikaru, Yamada, Yuta, Kasa, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prevention of late type Ia endoleaks is the main concern in thoracic endovascular aortic aneurysm repair (TEVAR) for thoracic aortic aneurysm. Since 2017, we have performed zone 0 TEVAR with proximal fixation augmentation using a Najuta thoracic fenestrated stent graft in addition to zone 2 TEVAR for distal arch aneurysms. We report the early and midterm outcomes of TEVAR performed using this strategy. This single-center retrospective study enrolled 386 cases of TEVAR for thoracic aortic disease between January 2013 and December 2020. Patients with thoracic aortic aneurysm treated by TEVAR landing at zone 2 was referred to as the standard group, whereas those treated by TEVAR landing at zone 0 using a Najuta fenestrated stent graft in addition to zone 2 TEVAR was referred to as the augmentation group. We retrospectively compared the clinical outcomes between the two groups. The primary end point was secondary intervention for postoperative type Ia endoleaks. Secondary end points were technical success, aneurysm-related death, and major adverse events (MAEs), including stroke, paraplegia, endoleaks, and secondary interventions. We performed TEVAR in 41 and 30 cases in the standard and augmentation groups, respectively. The mean aneurysm sizes in the standard and augmentation groups were 54.5 and 57.3 mm (P = .23), and the proximal neck lengths were 16.8 and 17.4 mm (P = .65), respectively. The anatomical characteristics seemed to be similar in both groups. The technical success rate in both groups was 100%. Three cases in the standard group had MAEs, including two stroke and one brachial artery pseudoaneurysm; whereas two cases had MAEs in the augmentation group, including one stroke and one paraplegia. There was no 30-day mortality or retrograde type A dissection in both groups. The mean observation periods in the standard and augmentation groups were 46 months (range, 1-123 months) and 35 months (range, 1-73 months), respectively. At 36 and 60 months after the procedure, the freedom from aneurysm-related death was 97.6% and 97.6% in the standard group, 100.0% and 100.0% in the augmentation group (P = .39); and the freedom from reintervention for type Ia endoleaks was 79.2% and 65.2% in the standard group, 100.0% and 100.0% in the augmentation group (P = .0087). A statistically significant decrease in reinterventions for type Ia endoleaks was observed in the augmentation group. Proximal fixation augmentation using the Najuta fenestrated stent graft during
ISSN:0741-5214
1097-6809
1097-6809
DOI:10.1016/j.jvs.2024.04.074