Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning
The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthes...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-06, Vol.20 (11), p.4921-4938 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4938 |
---|---|
container_issue | 11 |
container_start_page | 4921 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Guo, Jiasheng Yu, Chenning Li, Kenan Zhang, Yijian Wang, Guoqiang Li, Shuhua Dong, Hao |
description | The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design. |
doi_str_mv | 10.1021/acs.jctc.4c00071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055454751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084047840</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-1f09f4ee95440a40ea17d308b945744d4417b50d42d155d7d615a7f9fcec25113</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqTgxYOdSfOytN5k6BwMlM1ddilp-qod_TGTVth_b-rmDoKXl8D7fL_vy5eQS0aHjAbsTmk7XOtGD0FTSiU7In0mIPKjUTA6PvxZ2CNn1q4p5RwCfkp6PJQgGUR9sppjY2q7rZoPtLn1Vmjqe2-BReZPy42pv_Lq3ZsUdaIKb3GgXgtVVd1mabs5x7zKaqOxxKrxZqhMtzwnJ5kqLF7s3wFZPj2-jZ_92ctkOn6Y-Yoz2fgso1EGiJEAoAooKiZTTsMkAiEBUgAmE0FTCFImRCrTERNKZlGmUQeCMT4gNztfF_ezRdvEZW41Fi4j1q2NORUCBEjRodd_0HXdmsqlc1QIFKQbjqI7SrtmrMEs3pi8VGYbMxp3vceu97jrPd737iRXe-M2KTE9CH6LdsDtDviR_h791-8b_-WOIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084047840</pqid></control><display><type>article</type><title>Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning</title><source>American Chemical Society Journals</source><creator>Guo, Jiasheng ; Yu, Chenning ; Li, Kenan ; Zhang, Yijian ; Wang, Guoqiang ; Li, Shuhua ; Dong, Hao</creator><creatorcontrib>Guo, Jiasheng ; Yu, Chenning ; Li, Kenan ; Zhang, Yijian ; Wang, Guoqiang ; Li, Shuhua ; Dong, Hao</creatorcontrib><description>The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00071</identifier><identifier>PMID: 38747149</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemical synthesis ; Datasets ; Machine learning ; Neural networks ; Performance prediction ; Route planning ; Structure Prediction</subject><ispartof>Journal of chemical theory and computation, 2024-06, Vol.20 (11), p.4921-4938</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-1f09f4ee95440a40ea17d308b945744d4417b50d42d155d7d615a7f9fcec25113</cites><orcidid>0000-0001-9666-1919 ; 0000-0001-6756-057X ; 0000-0001-7280-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00071$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00071$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38747149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jiasheng</creatorcontrib><creatorcontrib>Yu, Chenning</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Zhang, Yijian</creatorcontrib><creatorcontrib>Wang, Guoqiang</creatorcontrib><creatorcontrib>Li, Shuhua</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><title>Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.</description><subject>Algorithms</subject><subject>Chemical synthesis</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Route planning</subject><subject>Structure Prediction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqTgxYOdSfOytN5k6BwMlM1ddilp-qod_TGTVth_b-rmDoKXl8D7fL_vy5eQS0aHjAbsTmk7XOtGD0FTSiU7In0mIPKjUTA6PvxZ2CNn1q4p5RwCfkp6PJQgGUR9sppjY2q7rZoPtLn1Vmjqe2-BReZPy42pv_Lq3ZsUdaIKb3GgXgtVVd1mabs5x7zKaqOxxKrxZqhMtzwnJ5kqLF7s3wFZPj2-jZ_92ctkOn6Y-Yoz2fgso1EGiJEAoAooKiZTTsMkAiEBUgAmE0FTCFImRCrTERNKZlGmUQeCMT4gNztfF_ezRdvEZW41Fi4j1q2NORUCBEjRodd_0HXdmsqlc1QIFKQbjqI7SrtmrMEs3pi8VGYbMxp3vceu97jrPd737iRXe-M2KTE9CH6LdsDtDviR_h791-8b_-WOIw</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Guo, Jiasheng</creator><creator>Yu, Chenning</creator><creator>Li, Kenan</creator><creator>Zhang, Yijian</creator><creator>Wang, Guoqiang</creator><creator>Li, Shuhua</creator><creator>Dong, Hao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9666-1919</orcidid><orcidid>https://orcid.org/0000-0001-6756-057X</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid></search><sort><creationdate>20240611</creationdate><title>Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning</title><author>Guo, Jiasheng ; Yu, Chenning ; Li, Kenan ; Zhang, Yijian ; Wang, Guoqiang ; Li, Shuhua ; Dong, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-1f09f4ee95440a40ea17d308b945744d4417b50d42d155d7d615a7f9fcec25113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chemical synthesis</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Route planning</topic><topic>Structure Prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jiasheng</creatorcontrib><creatorcontrib>Yu, Chenning</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Zhang, Yijian</creatorcontrib><creatorcontrib>Wang, Guoqiang</creatorcontrib><creatorcontrib>Li, Shuhua</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jiasheng</au><au>Yu, Chenning</au><au>Li, Kenan</au><au>Zhang, Yijian</au><au>Wang, Guoqiang</au><au>Li, Shuhua</au><au>Dong, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-06-11</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>4921</spage><epage>4938</epage><pages>4921-4938</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38747149</pmid><doi>10.1021/acs.jctc.4c00071</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9666-1919</orcidid><orcidid>https://orcid.org/0000-0001-6756-057X</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-06, Vol.20 (11), p.4921-4938 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3055454751 |
source | American Chemical Society Journals |
subjects | Algorithms Chemical synthesis Datasets Machine learning Neural networks Performance prediction Route planning Structure Prediction |
title | Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrosynthesis%20Zero:%20Self-Improving%20Global%20Synthesis%20Planning%20Using%20Reinforcement%20Learning&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Guo,%20Jiasheng&rft.date=2024-06-11&rft.volume=20&rft.issue=11&rft.spage=4921&rft.epage=4938&rft.pages=4921-4938&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00071&rft_dat=%3Cproquest_cross%3E3084047840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084047840&rft_id=info:pmid/38747149&rfr_iscdi=true |