Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication
Abstract The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded adv...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2024-07, Vol.195 (4), p.2799-2814 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2814 |
---|---|
container_issue | 4 |
container_start_page | 2799 |
container_title | Plant physiology (Bethesda) |
container_volume | 195 |
creator | Su, Ying Yang, Xuanwen Wang, Yuwei Li, Jialei Long, Qiming Cao, Shuo Wang, Xu Liu, Zhenya Huang, Siyang Chen, Zhuyifu Peng, Yanling Zhang, Fan Xue, Hui Cao, Xuejing Zhang, Mengyan Yisilam, Gulbar Chu, Zhenzhou Gao, Yuan Zhou, Yongfeng Liu, Zhongjie Xiao, Hua Tian, Xinmin |
description | Abstract
The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded advances in genetic studies and breeding programs. In this study, we assembled a haplotype-resolved telomere-to-telomere (T2T) reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on 12 assemblies from wild and cultivated species to investigate the dynamic changes of functional genes. Our results revealed the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Our analyses also demonstrated a higher prevalence of different types of resistance gene analogs (RGAs) in cultivars than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR, NB-ARC-LRR, and CC-NB-ARC-LRR genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding.
A haplotype-resolved T2T reference genome for apple and pan-genomic analyses of wild and cultivated apple species elucidates the mechanisms of the dynamic expansion resistance genes during apple domestication. |
doi_str_mv | 10.1093/plphys/kiae258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055452514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/plphys/kiae258</oup_id><sourcerecordid>3055452514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-93f1f98f5dbfbd2ca56a04e1cd261f2223bd80563bd0a23ab0e845c6b3a5f7423</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EoqWwMiKPMKT1Z5qOCPElVYIB5ugSn9tAEoc4QXTgf8coKSvTnZ9-7538CDnnbM7ZSi6astnu_OK9ABQ6OSBTrqWIhFbJIZkyFnaWJKsJOfH-jTHGJVfHZCKTpZKxlFPy_bwFj4Z2WLoKW4w6F-132qINo86RbrAOEoXa0Abq8dXiJ0IZRIpfQfWFq6mzQfaF72C0oaemb4t6Q6FpSqQmOH1X5NAF_JQcWSg9no1zRl7vbl9uHqL10_3jzfU6ysNPumglLberxGqT2cyIHHQMTCHPjYi5FULIzCRMx2EwEBIyhonSeZxJ0HaphJyRyyG3ad1HH-6nVeFzLEuo0fU-lUxrpYXmKqDzAc1b531oIG3aooJ2l3KW_laeDpWnY-XBcDFm91mF5g_fdxyAqwFwffNf2A-Y0JDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055452514</pqid></control><display><type>article</type><title>Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication</title><source>MEDLINE</source><source>Oxford Journals</source><creator>Su, Ying ; Yang, Xuanwen ; Wang, Yuwei ; Li, Jialei ; Long, Qiming ; Cao, Shuo ; Wang, Xu ; Liu, Zhenya ; Huang, Siyang ; Chen, Zhuyifu ; Peng, Yanling ; Zhang, Fan ; Xue, Hui ; Cao, Xuejing ; Zhang, Mengyan ; Yisilam, Gulbar ; Chu, Zhenzhou ; Gao, Yuan ; Zhou, Yongfeng ; Liu, Zhongjie ; Xiao, Hua ; Tian, Xinmin</creator><creatorcontrib>Su, Ying ; Yang, Xuanwen ; Wang, Yuwei ; Li, Jialei ; Long, Qiming ; Cao, Shuo ; Wang, Xu ; Liu, Zhenya ; Huang, Siyang ; Chen, Zhuyifu ; Peng, Yanling ; Zhang, Fan ; Xue, Hui ; Cao, Xuejing ; Zhang, Mengyan ; Yisilam, Gulbar ; Chu, Zhenzhou ; Gao, Yuan ; Zhou, Yongfeng ; Liu, Zhongjie ; Xiao, Hua ; Tian, Xinmin</creatorcontrib><description>Abstract
The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded advances in genetic studies and breeding programs. In this study, we assembled a haplotype-resolved telomere-to-telomere (T2T) reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on 12 assemblies from wild and cultivated species to investigate the dynamic changes of functional genes. Our results revealed the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Our analyses also demonstrated a higher prevalence of different types of resistance gene analogs (RGAs) in cultivars than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR, NB-ARC-LRR, and CC-NB-ARC-LRR genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding.
A haplotype-resolved T2T reference genome for apple and pan-genomic analyses of wild and cultivated apple species elucidates the mechanisms of the dynamic expansion resistance genes during apple domestication.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiae258</identifier><identifier>PMID: 38743633</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Disease Resistance - genetics ; Domestication ; Genes, Plant ; Genome, Plant - genetics ; Haplotypes - genetics ; Malus - genetics ; Telomere - genetics</subject><ispartof>Plant physiology (Bethesda), 2024-07, Vol.195 (4), p.2799-2814</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-93f1f98f5dbfbd2ca56a04e1cd261f2223bd80563bd0a23ab0e845c6b3a5f7423</cites><orcidid>0000-0002-1874-0256 ; 0000-0002-8495-7779 ; 0009-0001-1002-8280 ; 0000-0001-8406-6709 ; 0009-0004-3651-5265 ; 0009-0006-5938-0118 ; 0000-0002-3487-5070 ; 0000-0003-0594-0010 ; 0000-0003-3407-7009 ; 0000-0001-5582-7724 ; 0000-0003-0780-2973 ; 0000-0003-3172-3722 ; 0009-0006-5754-7332 ; 0009-0000-0162-3777 ; 0000-0002-3596-4112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Yang, Xuanwen</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Li, Jialei</creatorcontrib><creatorcontrib>Long, Qiming</creatorcontrib><creatorcontrib>Cao, Shuo</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Zhenya</creatorcontrib><creatorcontrib>Huang, Siyang</creatorcontrib><creatorcontrib>Chen, Zhuyifu</creatorcontrib><creatorcontrib>Peng, Yanling</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Zhang, Mengyan</creatorcontrib><creatorcontrib>Yisilam, Gulbar</creatorcontrib><creatorcontrib>Chu, Zhenzhou</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Liu, Zhongjie</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Tian, Xinmin</creatorcontrib><title>Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Abstract
The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded advances in genetic studies and breeding programs. In this study, we assembled a haplotype-resolved telomere-to-telomere (T2T) reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on 12 assemblies from wild and cultivated species to investigate the dynamic changes of functional genes. Our results revealed the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Our analyses also demonstrated a higher prevalence of different types of resistance gene analogs (RGAs) in cultivars than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR, NB-ARC-LRR, and CC-NB-ARC-LRR genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding.
A haplotype-resolved T2T reference genome for apple and pan-genomic analyses of wild and cultivated apple species elucidates the mechanisms of the dynamic expansion resistance genes during apple domestication.</description><subject>Disease Resistance - genetics</subject><subject>Domestication</subject><subject>Genes, Plant</subject><subject>Genome, Plant - genetics</subject><subject>Haplotypes - genetics</subject><subject>Malus - genetics</subject><subject>Telomere - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EoqWwMiKPMKT1Z5qOCPElVYIB5ugSn9tAEoc4QXTgf8coKSvTnZ9-7538CDnnbM7ZSi6astnu_OK9ABQ6OSBTrqWIhFbJIZkyFnaWJKsJOfH-jTHGJVfHZCKTpZKxlFPy_bwFj4Z2WLoKW4w6F-132qINo86RbrAOEoXa0Abq8dXiJ0IZRIpfQfWFq6mzQfaF72C0oaemb4t6Q6FpSqQmOH1X5NAF_JQcWSg9no1zRl7vbl9uHqL10_3jzfU6ysNPumglLberxGqT2cyIHHQMTCHPjYi5FULIzCRMx2EwEBIyhonSeZxJ0HaphJyRyyG3ad1HH-6nVeFzLEuo0fU-lUxrpYXmKqDzAc1b531oIG3aooJ2l3KW_laeDpWnY-XBcDFm91mF5g_fdxyAqwFwffNf2A-Y0JDw</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Su, Ying</creator><creator>Yang, Xuanwen</creator><creator>Wang, Yuwei</creator><creator>Li, Jialei</creator><creator>Long, Qiming</creator><creator>Cao, Shuo</creator><creator>Wang, Xu</creator><creator>Liu, Zhenya</creator><creator>Huang, Siyang</creator><creator>Chen, Zhuyifu</creator><creator>Peng, Yanling</creator><creator>Zhang, Fan</creator><creator>Xue, Hui</creator><creator>Cao, Xuejing</creator><creator>Zhang, Mengyan</creator><creator>Yisilam, Gulbar</creator><creator>Chu, Zhenzhou</creator><creator>Gao, Yuan</creator><creator>Zhou, Yongfeng</creator><creator>Liu, Zhongjie</creator><creator>Xiao, Hua</creator><creator>Tian, Xinmin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1874-0256</orcidid><orcidid>https://orcid.org/0000-0002-8495-7779</orcidid><orcidid>https://orcid.org/0009-0001-1002-8280</orcidid><orcidid>https://orcid.org/0000-0001-8406-6709</orcidid><orcidid>https://orcid.org/0009-0004-3651-5265</orcidid><orcidid>https://orcid.org/0009-0006-5938-0118</orcidid><orcidid>https://orcid.org/0000-0002-3487-5070</orcidid><orcidid>https://orcid.org/0000-0003-0594-0010</orcidid><orcidid>https://orcid.org/0000-0003-3407-7009</orcidid><orcidid>https://orcid.org/0000-0001-5582-7724</orcidid><orcidid>https://orcid.org/0000-0003-0780-2973</orcidid><orcidid>https://orcid.org/0000-0003-3172-3722</orcidid><orcidid>https://orcid.org/0009-0006-5754-7332</orcidid><orcidid>https://orcid.org/0009-0000-0162-3777</orcidid><orcidid>https://orcid.org/0000-0002-3596-4112</orcidid></search><sort><creationdate>20240731</creationdate><title>Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication</title><author>Su, Ying ; Yang, Xuanwen ; Wang, Yuwei ; Li, Jialei ; Long, Qiming ; Cao, Shuo ; Wang, Xu ; Liu, Zhenya ; Huang, Siyang ; Chen, Zhuyifu ; Peng, Yanling ; Zhang, Fan ; Xue, Hui ; Cao, Xuejing ; Zhang, Mengyan ; Yisilam, Gulbar ; Chu, Zhenzhou ; Gao, Yuan ; Zhou, Yongfeng ; Liu, Zhongjie ; Xiao, Hua ; Tian, Xinmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-93f1f98f5dbfbd2ca56a04e1cd261f2223bd80563bd0a23ab0e845c6b3a5f7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Disease Resistance - genetics</topic><topic>Domestication</topic><topic>Genes, Plant</topic><topic>Genome, Plant - genetics</topic><topic>Haplotypes - genetics</topic><topic>Malus - genetics</topic><topic>Telomere - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Yang, Xuanwen</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Li, Jialei</creatorcontrib><creatorcontrib>Long, Qiming</creatorcontrib><creatorcontrib>Cao, Shuo</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Liu, Zhenya</creatorcontrib><creatorcontrib>Huang, Siyang</creatorcontrib><creatorcontrib>Chen, Zhuyifu</creatorcontrib><creatorcontrib>Peng, Yanling</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Zhang, Mengyan</creatorcontrib><creatorcontrib>Yisilam, Gulbar</creatorcontrib><creatorcontrib>Chu, Zhenzhou</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Liu, Zhongjie</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Tian, Xinmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Ying</au><au>Yang, Xuanwen</au><au>Wang, Yuwei</au><au>Li, Jialei</au><au>Long, Qiming</au><au>Cao, Shuo</au><au>Wang, Xu</au><au>Liu, Zhenya</au><au>Huang, Siyang</au><au>Chen, Zhuyifu</au><au>Peng, Yanling</au><au>Zhang, Fan</au><au>Xue, Hui</au><au>Cao, Xuejing</au><au>Zhang, Mengyan</au><au>Yisilam, Gulbar</au><au>Chu, Zhenzhou</au><au>Gao, Yuan</au><au>Zhou, Yongfeng</au><au>Liu, Zhongjie</au><au>Xiao, Hua</au><au>Tian, Xinmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>195</volume><issue>4</issue><spage>2799</spage><epage>2814</epage><pages>2799-2814</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Abstract
The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded advances in genetic studies and breeding programs. In this study, we assembled a haplotype-resolved telomere-to-telomere (T2T) reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on 12 assemblies from wild and cultivated species to investigate the dynamic changes of functional genes. Our results revealed the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Our analyses also demonstrated a higher prevalence of different types of resistance gene analogs (RGAs) in cultivars than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR, NB-ARC-LRR, and CC-NB-ARC-LRR genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding.
A haplotype-resolved T2T reference genome for apple and pan-genomic analyses of wild and cultivated apple species elucidates the mechanisms of the dynamic expansion resistance genes during apple domestication.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38743633</pmid><doi>10.1093/plphys/kiae258</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1874-0256</orcidid><orcidid>https://orcid.org/0000-0002-8495-7779</orcidid><orcidid>https://orcid.org/0009-0001-1002-8280</orcidid><orcidid>https://orcid.org/0000-0001-8406-6709</orcidid><orcidid>https://orcid.org/0009-0004-3651-5265</orcidid><orcidid>https://orcid.org/0009-0006-5938-0118</orcidid><orcidid>https://orcid.org/0000-0002-3487-5070</orcidid><orcidid>https://orcid.org/0000-0003-0594-0010</orcidid><orcidid>https://orcid.org/0000-0003-3407-7009</orcidid><orcidid>https://orcid.org/0000-0001-5582-7724</orcidid><orcidid>https://orcid.org/0000-0003-0780-2973</orcidid><orcidid>https://orcid.org/0000-0003-3172-3722</orcidid><orcidid>https://orcid.org/0009-0006-5754-7332</orcidid><orcidid>https://orcid.org/0009-0000-0162-3777</orcidid><orcidid>https://orcid.org/0000-0002-3596-4112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2024-07, Vol.195 (4), p.2799-2814 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_3055452514 |
source | MEDLINE; Oxford Journals |
subjects | Disease Resistance - genetics Domestication Genes, Plant Genome, Plant - genetics Haplotypes - genetics Malus - genetics Telomere - genetics |
title | Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phased%20telomere-to-telomere%20reference%20genome%20and%20pangenome%20reveal%20an%20expansion%20of%20resistance%20genes%20during%20apple%20domestication&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Su,%20Ying&rft.date=2024-07-31&rft.volume=195&rft.issue=4&rft.spage=2799&rft.epage=2814&rft.pages=2799-2814&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiae258&rft_dat=%3Cproquest_cross%3E3055452514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055452514&rft_id=info:pmid/38743633&rft_oup_id=10.1093/plphys/kiae258&rfr_iscdi=true |