AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms

Artificial intelligence-based methods for predicting drug–target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-05, Vol.64 (10), p.4373-4384
Hauptverfasser: Zhang, Sizhe, Tian, Xuecong, Chen, Chen, Su, Ying, Huang, Wanhua, Lv, Xiaoyi, Chen, Cheng, Li, Hongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4384
container_issue 10
container_start_page 4373
container_title Journal of chemical information and modeling
container_volume 64
creator Zhang, Sizhe
Tian, Xuecong
Chen, Chen
Su, Ying
Huang, Wanhua
Lv, Xiaoyi
Chen, Cheng
Li, Hongyi
description Artificial intelligence-based methods for predicting drug–target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.
doi_str_mv 10.1021/acs.jcim.4c00584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055452205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064260479</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-5841520046e09305ff7e04b9e27f6a2cb7783bec4eb48bcdc897140a6fd4fec53</originalsourceid><addsrcrecordid>eNp1kb1u2zAUhYmiQeMm2TMVBLpkqJxLkfrr5tj5EWAgHRwgm0BRVw4NS3RJyUGHAn2HvmGeJFRsdwjQiQe43zm8F4eQcwZjBiG7lMqNV0o3Y6EAolR8ICMWiSzIYnj8eNBRFh-Tz86tADjP4vATOeZpIjgwPiK_J_ntfTBb5N_pD4uVVp1ul3Rm--XLn78LaZfY0bzt0Eo_Ma2jV9JhRU1L82ZjzdbrAfZms0HbaXR0appSt37wrLsnOqnkptNbpPkQ8qYm66Wxfta4U3JUy7XDs_17Qh5urhfTu2B-f5tPJ_NAcpZ0gb-MRSGAiBEyDlFdJwiizDBM6liGqkySlJeoBJYiLVWl0ixhAmRcV6JGFfETcrHL9Sv_7NF1RaOdwvVatmh6V_jMSERhCAP69R26Mr1t_XaeikUYg0gyT8GOUtY4Z7EuNlY30v4qGBRDNYWvphiqKfbVeMuXfXBfNlj9Mxy68MC3HfBmPXz637xXvM-bog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064260479</pqid></control><display><type>article</type><title>AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Sizhe ; Tian, Xuecong ; Chen, Chen ; Su, Ying ; Huang, Wanhua ; Lv, Xiaoyi ; Chen, Cheng ; Li, Hongyi</creator><creatorcontrib>Zhang, Sizhe ; Tian, Xuecong ; Chen, Chen ; Su, Ying ; Huang, Wanhua ; Lv, Xiaoyi ; Chen, Cheng ; Li, Hongyi</creatorcontrib><description>Artificial intelligence-based methods for predicting drug–target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00584</identifier><identifier>PMID: 38743013</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adaptive algorithms ; Algorithms ; Artificial Intelligence ; Bioinformatics ; Datasets ; Drug Discovery - methods ; Functional groups ; Iterative algorithms ; Molecular docking ; Molecular Docking Simulation ; Optimization ; Pharmaceutical Preparations - chemistry ; Pharmaceutical Preparations - metabolism ; Similarity</subject><ispartof>Journal of chemical information and modeling, 2024-05, Vol.64 (10), p.4373-4384</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society May 27, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-5841520046e09305ff7e04b9e27f6a2cb7783bec4eb48bcdc897140a6fd4fec53</cites><orcidid>0000-0001-6855-7428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00584$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00584$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Sizhe</creatorcontrib><creatorcontrib>Tian, Xuecong</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Huang, Wanhua</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><title>AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Artificial intelligence-based methods for predicting drug–target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Datasets</subject><subject>Drug Discovery - methods</subject><subject>Functional groups</subject><subject>Iterative algorithms</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Optimization</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>Similarity</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1u2zAUhYmiQeMm2TMVBLpkqJxLkfrr5tj5EWAgHRwgm0BRVw4NS3RJyUGHAn2HvmGeJFRsdwjQiQe43zm8F4eQcwZjBiG7lMqNV0o3Y6EAolR8ICMWiSzIYnj8eNBRFh-Tz86tADjP4vATOeZpIjgwPiK_J_ntfTBb5N_pD4uVVp1ul3Rm--XLn78LaZfY0bzt0Eo_Ma2jV9JhRU1L82ZjzdbrAfZms0HbaXR0appSt37wrLsnOqnkptNbpPkQ8qYm66Wxfta4U3JUy7XDs_17Qh5urhfTu2B-f5tPJ_NAcpZ0gb-MRSGAiBEyDlFdJwiizDBM6liGqkySlJeoBJYiLVWl0ixhAmRcV6JGFfETcrHL9Sv_7NF1RaOdwvVatmh6V_jMSERhCAP69R26Mr1t_XaeikUYg0gyT8GOUtY4Z7EuNlY30v4qGBRDNYWvphiqKfbVeMuXfXBfNlj9Mxy68MC3HfBmPXz637xXvM-bog</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Zhang, Sizhe</creator><creator>Tian, Xuecong</creator><creator>Chen, Chen</creator><creator>Su, Ying</creator><creator>Huang, Wanhua</creator><creator>Lv, Xiaoyi</creator><creator>Chen, Cheng</creator><creator>Li, Hongyi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6855-7428</orcidid></search><sort><creationdate>20240527</creationdate><title>AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms</title><author>Zhang, Sizhe ; Tian, Xuecong ; Chen, Chen ; Su, Ying ; Huang, Wanhua ; Lv, Xiaoyi ; Chen, Cheng ; Li, Hongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-5841520046e09305ff7e04b9e27f6a2cb7783bec4eb48bcdc897140a6fd4fec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Datasets</topic><topic>Drug Discovery - methods</topic><topic>Functional groups</topic><topic>Iterative algorithms</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Optimization</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sizhe</creatorcontrib><creatorcontrib>Tian, Xuecong</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Huang, Wanhua</creatorcontrib><creatorcontrib>Lv, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Li, Hongyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Sizhe</au><au>Tian, Xuecong</au><au>Chen, Chen</au><au>Su, Ying</au><au>Huang, Wanhua</au><au>Lv, Xiaoyi</au><au>Chen, Cheng</au><au>Li, Hongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-05-27</date><risdate>2024</risdate><volume>64</volume><issue>10</issue><spage>4373</spage><epage>4384</epage><pages>4373-4384</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Artificial intelligence-based methods for predicting drug–target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38743013</pmid><doi>10.1021/acs.jcim.4c00584</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6855-7428</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-05, Vol.64 (10), p.4373-4384
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_3055452205
source MEDLINE; ACS Publications
subjects Adaptive algorithms
Algorithms
Artificial Intelligence
Bioinformatics
Datasets
Drug Discovery - methods
Functional groups
Iterative algorithms
Molecular docking
Molecular Docking Simulation
Optimization
Pharmaceutical Preparations - chemistry
Pharmaceutical Preparations - metabolism
Similarity
title AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AIGO-DTI:%20Predicting%20Drug%E2%80%93Target%20Interactions%20Based%20on%20Improved%20Drug%20Properties%20Combined%20with%20Adaptive%20Iterative%20Algorithms&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Zhang,%20Sizhe&rft.date=2024-05-27&rft.volume=64&rft.issue=10&rft.spage=4373&rft.epage=4384&rft.pages=4373-4384&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00584&rft_dat=%3Cproquest_cross%3E3064260479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064260479&rft_id=info:pmid/38743013&rfr_iscdi=true