SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells

Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2402385-n/a
Hauptverfasser: Liu, Shaoting, Hao, Yang, Sun, Mengxue, Ren, Jingkun, Li, Shiqi, Wu, Yukun, Sun, Qinjun, Hao, Yuying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2402385
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Liu, Shaoting
Hao, Yang
Sun, Mengxue
Ren, Jingkun
Li, Shiqi
Wu, Yukun
Sun, Qinjun
Hao, Yuying
description Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm. The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.
doi_str_mv 10.1002/smll.202402385
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055452063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112453718</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-2f482c7f05b27d331a9344d6f864b58c4ae448af49ddf7896760e75c87df63d3</originalsourceid><addsrcrecordid>eNpdkctuFDEQRVsIJEJgy9oSGzYT_G73MhoSgtQ8O3vL40fGwW03tjvQOz6BX-DX-BJ6CJoFq6ornaq6qts0zxE8QxDiV2UM4QxDTCEmgj1oThBHZMMF7h4eewQfN09KuYWQIEzbk-bXEAeLwadZxTqP4HWqBahowHYfUt7b7974aMG5tlVVC4Z5mrItBQxLtPnGl-q1CmEB71P8_eNnVsar6u8s-Gx1Gnc-ripF0Kd1xKUMrvzNHlw457W3US9_Lw1V7XzwdQEfbU535Ys_HEpBZbC1IZSnzSOnQrHP_tXT5vry4np7tek_vHm7Pe83E-acbbCjAuvWQbbDrSEEqY5QargTnO6Y0FRZSoVytDPGtaLjLYe2ZVq0xnFiyGnz8n7tlNPX2ZYqR1_0akBFm-YiCWSMMgw5WdEX_6G3ac5xNScJWt_KSIvESnX31Dcf7CKn7EeVF4mgPKQlD2nJY1pyeNf3R0X-AN0VjsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453718</pqid></control><display><type>article</type><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</creator><creatorcontrib>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</creatorcontrib><description>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm. The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402385</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bend radius ; Carrier mobility ; Carrier recombination ; Carrier transport ; Chlorhexidine ; chlorhexidine acetate ; Crystal defects ; Crystallization ; Efficiency ; Energy conversion efficiency ; Energy levels ; Grain boundaries ; Hydrophobicity ; Lattice vacancies ; non‐radiative recombination ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; power conversion efficiency ; Quantum dots ; Radiative recombination ; Residual energy ; Residual stress ; SnSe2 QDs ; Solar cells ; Tin dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402385-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9691-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Liu, Shaoting</creatorcontrib><creatorcontrib>Hao, Yang</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><creatorcontrib>Ren, Jingkun</creatorcontrib><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Wu, Yukun</creatorcontrib><creatorcontrib>Sun, Qinjun</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm. The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</description><subject>Bend radius</subject><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Chlorhexidine</subject><subject>chlorhexidine acetate</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Grain boundaries</subject><subject>Hydrophobicity</subject><subject>Lattice vacancies</subject><subject>non‐radiative recombination</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>power conversion efficiency</subject><subject>Quantum dots</subject><subject>Radiative recombination</subject><subject>Residual energy</subject><subject>Residual stress</subject><subject>SnSe2 QDs</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkctuFDEQRVsIJEJgy9oSGzYT_G73MhoSgtQ8O3vL40fGwW03tjvQOz6BX-DX-BJ6CJoFq6ornaq6qts0zxE8QxDiV2UM4QxDTCEmgj1oThBHZMMF7h4eewQfN09KuYWQIEzbk-bXEAeLwadZxTqP4HWqBahowHYfUt7b7974aMG5tlVVC4Z5mrItBQxLtPnGl-q1CmEB71P8_eNnVsar6u8s-Gx1Gnc-ripF0Kd1xKUMrvzNHlw457W3US9_Lw1V7XzwdQEfbU535Ys_HEpBZbC1IZSnzSOnQrHP_tXT5vry4np7tek_vHm7Pe83E-acbbCjAuvWQbbDrSEEqY5QargTnO6Y0FRZSoVytDPGtaLjLYe2ZVq0xnFiyGnz8n7tlNPX2ZYqR1_0akBFm-YiCWSMMgw5WdEX_6G3ac5xNScJWt_KSIvESnX31Dcf7CKn7EeVF4mgPKQlD2nJY1pyeNf3R0X-AN0VjsU</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Shaoting</creator><creator>Hao, Yang</creator><creator>Sun, Mengxue</creator><creator>Ren, Jingkun</creator><creator>Li, Shiqi</creator><creator>Wu, Yukun</creator><creator>Sun, Qinjun</creator><creator>Hao, Yuying</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9691-7109</orcidid></search><sort><creationdate>20240901</creationdate><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><author>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-2f482c7f05b27d331a9344d6f864b58c4ae448af49ddf7896760e75c87df63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bend radius</topic><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Chlorhexidine</topic><topic>chlorhexidine acetate</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Grain boundaries</topic><topic>Hydrophobicity</topic><topic>Lattice vacancies</topic><topic>non‐radiative recombination</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>power conversion efficiency</topic><topic>Quantum dots</topic><topic>Radiative recombination</topic><topic>Residual energy</topic><topic>Residual stress</topic><topic>SnSe2 QDs</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shaoting</creatorcontrib><creatorcontrib>Hao, Yang</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><creatorcontrib>Ren, Jingkun</creatorcontrib><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Wu, Yukun</creatorcontrib><creatorcontrib>Sun, Qinjun</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shaoting</au><au>Hao, Yang</au><au>Sun, Mengxue</au><au>Ren, Jingkun</au><au>Li, Shiqi</au><au>Wu, Yukun</au><au>Sun, Qinjun</au><au>Hao, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2402385</spage><epage>n/a</epage><pages>e2402385-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm. The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202402385</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9691-7109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402385-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3055452063
source Wiley Online Library Journals Frontfile Complete
subjects Bend radius
Carrier mobility
Carrier recombination
Carrier transport
Chlorhexidine
chlorhexidine acetate
Crystal defects
Crystallization
Efficiency
Energy conversion efficiency
Energy levels
Grain boundaries
Hydrophobicity
Lattice vacancies
non‐radiative recombination
perovskite solar cells
Perovskites
Photovoltaic cells
power conversion efficiency
Quantum dots
Radiative recombination
Residual energy
Residual stress
SnSe2 QDs
Solar cells
Tin dioxide
title SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnSe2%20Quantum%20Dots%20and%20Chlorhexidine%20Acetate%20Suppress%20Synergistically%20Non%E2%80%90radiative%20Recombination%20Loss%20for%20High%20Efficiency%20and%20Stability%20Perovskite%20Solar%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Shaoting&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2402385&rft.epage=n/a&rft.pages=e2402385-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402385&rft_dat=%3Cproquest_wiley%3E3112453718%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112453718&rft_id=info:pmid/&rfr_iscdi=true