SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells
Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and in...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (38), p.e2402385-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e2402385 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Liu, Shaoting Hao, Yang Sun, Mengxue Ren, Jingkun Li, Shiqi Wu, Yukun Sun, Qinjun Hao, Yuying |
description | Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. |
doi_str_mv | 10.1002/smll.202402385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055452063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112453718</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-2f482c7f05b27d331a9344d6f864b58c4ae448af49ddf7896760e75c87df63d3</originalsourceid><addsrcrecordid>eNpdkctuFDEQRVsIJEJgy9oSGzYT_G73MhoSgtQ8O3vL40fGwW03tjvQOz6BX-DX-BJ6CJoFq6ornaq6qts0zxE8QxDiV2UM4QxDTCEmgj1oThBHZMMF7h4eewQfN09KuYWQIEzbk-bXEAeLwadZxTqP4HWqBahowHYfUt7b7974aMG5tlVVC4Z5mrItBQxLtPnGl-q1CmEB71P8_eNnVsar6u8s-Gx1Gnc-ripF0Kd1xKUMrvzNHlw457W3US9_Lw1V7XzwdQEfbU535Ys_HEpBZbC1IZSnzSOnQrHP_tXT5vry4np7tek_vHm7Pe83E-acbbCjAuvWQbbDrSEEqY5QargTnO6Y0FRZSoVytDPGtaLjLYe2ZVq0xnFiyGnz8n7tlNPX2ZYqR1_0akBFm-YiCWSMMgw5WdEX_6G3ac5xNScJWt_KSIvESnX31Dcf7CKn7EeVF4mgPKQlD2nJY1pyeNf3R0X-AN0VjsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112453718</pqid></control><display><type>article</type><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</creator><creatorcontrib>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</creatorcontrib><description>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402385</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bend radius ; Carrier mobility ; Carrier recombination ; Carrier transport ; Chlorhexidine ; chlorhexidine acetate ; Crystal defects ; Crystallization ; Efficiency ; Energy conversion efficiency ; Energy levels ; Grain boundaries ; Hydrophobicity ; Lattice vacancies ; non‐radiative recombination ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; power conversion efficiency ; Quantum dots ; Radiative recombination ; Residual energy ; Residual stress ; SnSe2 QDs ; Solar cells ; Tin dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402385-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9691-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Liu, Shaoting</creatorcontrib><creatorcontrib>Hao, Yang</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><creatorcontrib>Ren, Jingkun</creatorcontrib><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Wu, Yukun</creatorcontrib><creatorcontrib>Sun, Qinjun</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</description><subject>Bend radius</subject><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Chlorhexidine</subject><subject>chlorhexidine acetate</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Grain boundaries</subject><subject>Hydrophobicity</subject><subject>Lattice vacancies</subject><subject>non‐radiative recombination</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>power conversion efficiency</subject><subject>Quantum dots</subject><subject>Radiative recombination</subject><subject>Residual energy</subject><subject>Residual stress</subject><subject>SnSe2 QDs</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkctuFDEQRVsIJEJgy9oSGzYT_G73MhoSgtQ8O3vL40fGwW03tjvQOz6BX-DX-BJ6CJoFq6ornaq6qts0zxE8QxDiV2UM4QxDTCEmgj1oThBHZMMF7h4eewQfN09KuYWQIEzbk-bXEAeLwadZxTqP4HWqBahowHYfUt7b7974aMG5tlVVC4Z5mrItBQxLtPnGl-q1CmEB71P8_eNnVsar6u8s-Gx1Gnc-ripF0Kd1xKUMrvzNHlw457W3US9_Lw1V7XzwdQEfbU535Ys_HEpBZbC1IZSnzSOnQrHP_tXT5vry4np7tek_vHm7Pe83E-acbbCjAuvWQbbDrSEEqY5QargTnO6Y0FRZSoVytDPGtaLjLYe2ZVq0xnFiyGnz8n7tlNPX2ZYqR1_0akBFm-YiCWSMMgw5WdEX_6G3ac5xNScJWt_KSIvESnX31Dcf7CKn7EeVF4mgPKQlD2nJY1pyeNf3R0X-AN0VjsU</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Shaoting</creator><creator>Hao, Yang</creator><creator>Sun, Mengxue</creator><creator>Ren, Jingkun</creator><creator>Li, Shiqi</creator><creator>Wu, Yukun</creator><creator>Sun, Qinjun</creator><creator>Hao, Yuying</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9691-7109</orcidid></search><sort><creationdate>20240901</creationdate><title>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</title><author>Liu, Shaoting ; Hao, Yang ; Sun, Mengxue ; Ren, Jingkun ; Li, Shiqi ; Wu, Yukun ; Sun, Qinjun ; Hao, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-2f482c7f05b27d331a9344d6f864b58c4ae448af49ddf7896760e75c87df63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bend radius</topic><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Chlorhexidine</topic><topic>chlorhexidine acetate</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Grain boundaries</topic><topic>Hydrophobicity</topic><topic>Lattice vacancies</topic><topic>non‐radiative recombination</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>power conversion efficiency</topic><topic>Quantum dots</topic><topic>Radiative recombination</topic><topic>Residual energy</topic><topic>Residual stress</topic><topic>SnSe2 QDs</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shaoting</creatorcontrib><creatorcontrib>Hao, Yang</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><creatorcontrib>Ren, Jingkun</creatorcontrib><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Wu, Yukun</creatorcontrib><creatorcontrib>Sun, Qinjun</creatorcontrib><creatorcontrib>Hao, Yuying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shaoting</au><au>Hao, Yang</au><au>Sun, Mengxue</au><au>Ren, Jingkun</au><au>Li, Shiqi</au><au>Wu, Yukun</au><au>Sun, Qinjun</au><au>Hao, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>38</issue><spage>e2402385</spage><epage>n/a</epage><pages>e2402385-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Non‐radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non‐radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
The electrical properties and surface morphology of SnSe2‐SnO2 are improved. The CA effectively passivates the defects on the surface and grain boundary of perovskite due to it containing more abundant active sites. The synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202402385</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9691-7109</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (38), p.e2402385-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3055452063 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bend radius Carrier mobility Carrier recombination Carrier transport Chlorhexidine chlorhexidine acetate Crystal defects Crystallization Efficiency Energy conversion efficiency Energy levels Grain boundaries Hydrophobicity Lattice vacancies non‐radiative recombination perovskite solar cells Perovskites Photovoltaic cells power conversion efficiency Quantum dots Radiative recombination Residual energy Residual stress SnSe2 QDs Solar cells Tin dioxide |
title | SnSe2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnSe2%20Quantum%20Dots%20and%20Chlorhexidine%20Acetate%20Suppress%20Synergistically%20Non%E2%80%90radiative%20Recombination%20Loss%20for%20High%20Efficiency%20and%20Stability%20Perovskite%20Solar%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Shaoting&rft.date=2024-09-01&rft.volume=20&rft.issue=38&rft.spage=e2402385&rft.epage=n/a&rft.pages=e2402385-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402385&rft_dat=%3Cproquest_wiley%3E3112453718%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112453718&rft_id=info:pmid/&rfr_iscdi=true |