Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization

To analyze the lifetime difference based on the charge dynamics in the emitting layer (EML), we applied two electron transport layers (ETLs) with significantly different electron transporting characteristics to the same EML. Even with the same EML configuration, the device lifetime increased by appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (20), p.26468-26477
Hauptverfasser: Lee, Hakjun, Kim, Taekyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26477
container_issue 20
container_start_page 26468
container_title ACS applied materials & interfaces
container_volume 16
creator Lee, Hakjun
Kim, Taekyung
description To analyze the lifetime difference based on the charge dynamics in the emitting layer (EML), we applied two electron transport layers (ETLs) with significantly different electron transporting characteristics to the same EML. Even with the same EML configuration, the device lifetime increased by approximately 4-fold, from 291 h to over 1000 h of LT50 (the time taken for the luminance to decrease to 50% of its initial value of 1000 cd/m2). Although trap/detrap of holes in the dopant molecules was observed through impedance spectroscopy, we found that the most significant difference in lifetime was caused by the quantity of electron current. Surprisingly, depending on the electron transporting layer, the primary bimolecular interaction in the EML (i.e., exciton-exciton, exciton–polaron interaction) dramatically changes even in the same EML configuration, which is theoretically analyzed by the numerical fitting of transient electroluminescence data and experimentally confirmed by magneto-electroluminescence (MEL) measurements. To the best of our knowledge, for the first time, the MEL measurements are demonstrated as a tool that can be utilized to intuitively discern the dominance of bimolecular interaction with respect to the operational stability of phosphorescent organic light-emitting diodes (PhOLEDs).
doi_str_mv 10.1021/acsami.4c05175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3054840145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054840145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-d36ede0b46bbab2751a96971498df7c06fc3829b650eb02257184a7b17c7bb923</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEoqVw5Yh8REhZbMeOE25lu0ClhfZAz9HYmWxcJXawE9Dyv_h_uLtLb5w8st_7_DQvy14zumKUs_dgIox2JQyVTMkn2TmrhcgrLvnTx1mIs-xFjPeUlgWn8nl2VlSqqCtVn2d_7lyAnzhYtyNzj-QKdwFamK135Bbm_hfsI7Eu3eNEPg4Lktvex6n3AaNBN5Ob7eYqpucJXfsASb51D2GXUHuXopn4gVy7aHf9HEkX_Ei-LSMGa2Aglw6GfbSRgGvJV9g5nH2-GdDMwQ_LaN3hD4MHIpg52X4for3MnnUwRHx1Oi-yu0-b7-sv-fbm8_X6cpsDr-Sct0WJLVItSq1BcyUZ1GWtmKirtlOGlp0pKl7rUlLUlHOpWCVAaaaM0rrmxUX29sidgv-xYJyb0aZIwwAO_RKbgkpRCcqETNLVUWqCjzFg10zBjhD2DaPNQ1XNsarmVFUyvDmxFz1i-yj_100SvDsKkrG590tI24r_o_0F2NmiSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054840145</pqid></control><display><type>article</type><title>Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization</title><source>ACS Publications</source><creator>Lee, Hakjun ; Kim, Taekyung</creator><creatorcontrib>Lee, Hakjun ; Kim, Taekyung</creatorcontrib><description>To analyze the lifetime difference based on the charge dynamics in the emitting layer (EML), we applied two electron transport layers (ETLs) with significantly different electron transporting characteristics to the same EML. Even with the same EML configuration, the device lifetime increased by approximately 4-fold, from 291 h to over 1000 h of LT50 (the time taken for the luminance to decrease to 50% of its initial value of 1000 cd/m2). Although trap/detrap of holes in the dopant molecules was observed through impedance spectroscopy, we found that the most significant difference in lifetime was caused by the quantity of electron current. Surprisingly, depending on the electron transporting layer, the primary bimolecular interaction in the EML (i.e., exciton-exciton, exciton–polaron interaction) dramatically changes even in the same EML configuration, which is theoretically analyzed by the numerical fitting of transient electroluminescence data and experimentally confirmed by magneto-electroluminescence (MEL) measurements. To the best of our knowledge, for the first time, the MEL measurements are demonstrated as a tool that can be utilized to intuitively discern the dominance of bimolecular interaction with respect to the operational stability of phosphorescent organic light-emitting diodes (PhOLEDs).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05175</identifier><identifier>PMID: 38739879</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-05, Vol.16 (20), p.26468-26477</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a285t-d36ede0b46bbab2751a96971498df7c06fc3829b650eb02257184a7b17c7bb923</cites><orcidid>0000-0001-7632-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c05175$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c05175$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38739879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hakjun</creatorcontrib><creatorcontrib>Kim, Taekyung</creatorcontrib><title>Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To analyze the lifetime difference based on the charge dynamics in the emitting layer (EML), we applied two electron transport layers (ETLs) with significantly different electron transporting characteristics to the same EML. Even with the same EML configuration, the device lifetime increased by approximately 4-fold, from 291 h to over 1000 h of LT50 (the time taken for the luminance to decrease to 50% of its initial value of 1000 cd/m2). Although trap/detrap of holes in the dopant molecules was observed through impedance spectroscopy, we found that the most significant difference in lifetime was caused by the quantity of electron current. Surprisingly, depending on the electron transporting layer, the primary bimolecular interaction in the EML (i.e., exciton-exciton, exciton–polaron interaction) dramatically changes even in the same EML configuration, which is theoretically analyzed by the numerical fitting of transient electroluminescence data and experimentally confirmed by magneto-electroluminescence (MEL) measurements. To the best of our knowledge, for the first time, the MEL measurements are demonstrated as a tool that can be utilized to intuitively discern the dominance of bimolecular interaction with respect to the operational stability of phosphorescent organic light-emitting diodes (PhOLEDs).</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhSMEoqVw5Yh8REhZbMeOE25lu0ClhfZAz9HYmWxcJXawE9Dyv_h_uLtLb5w8st_7_DQvy14zumKUs_dgIox2JQyVTMkn2TmrhcgrLvnTx1mIs-xFjPeUlgWn8nl2VlSqqCtVn2d_7lyAnzhYtyNzj-QKdwFamK135Bbm_hfsI7Eu3eNEPg4Lktvex6n3AaNBN5Ob7eYqpucJXfsASb51D2GXUHuXopn4gVy7aHf9HEkX_Ei-LSMGa2Aglw6GfbSRgGvJV9g5nH2-GdDMwQ_LaN3hD4MHIpg52X4for3MnnUwRHx1Oi-yu0-b7-sv-fbm8_X6cpsDr-Sct0WJLVItSq1BcyUZ1GWtmKirtlOGlp0pKl7rUlLUlHOpWCVAaaaM0rrmxUX29sidgv-xYJyb0aZIwwAO_RKbgkpRCcqETNLVUWqCjzFg10zBjhD2DaPNQ1XNsarmVFUyvDmxFz1i-yj_100SvDsKkrG590tI24r_o_0F2NmiSw</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Lee, Hakjun</creator><creator>Kim, Taekyung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7632-8756</orcidid></search><sort><creationdate>20240522</creationdate><title>Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization</title><author>Lee, Hakjun ; Kim, Taekyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-d36ede0b46bbab2751a96971498df7c06fc3829b650eb02257184a7b17c7bb923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hakjun</creatorcontrib><creatorcontrib>Kim, Taekyung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hakjun</au><au>Kim, Taekyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-22</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>26468</spage><epage>26477</epage><pages>26468-26477</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To analyze the lifetime difference based on the charge dynamics in the emitting layer (EML), we applied two electron transport layers (ETLs) with significantly different electron transporting characteristics to the same EML. Even with the same EML configuration, the device lifetime increased by approximately 4-fold, from 291 h to over 1000 h of LT50 (the time taken for the luminance to decrease to 50% of its initial value of 1000 cd/m2). Although trap/detrap of holes in the dopant molecules was observed through impedance spectroscopy, we found that the most significant difference in lifetime was caused by the quantity of electron current. Surprisingly, depending on the electron transporting layer, the primary bimolecular interaction in the EML (i.e., exciton-exciton, exciton–polaron interaction) dramatically changes even in the same EML configuration, which is theoretically analyzed by the numerical fitting of transient electroluminescence data and experimentally confirmed by magneto-electroluminescence (MEL) measurements. To the best of our knowledge, for the first time, the MEL measurements are demonstrated as a tool that can be utilized to intuitively discern the dominance of bimolecular interaction with respect to the operational stability of phosphorescent organic light-emitting diodes (PhOLEDs).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38739879</pmid><doi>10.1021/acsami.4c05175</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7632-8756</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-05, Vol.16 (20), p.26468-26477
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3054840145
source ACS Publications
subjects Organic Electronic Devices
title Unraveling the Degradation Pathways in Deep Blue Phosphorescent OLEDs Depending on Charge Dynamics: Insights from Numerical Analysis and Magneto-Electroluminescence Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Degradation%20Pathways%20in%20Deep%20Blue%20Phosphorescent%20OLEDs%20Depending%20on%20Charge%20Dynamics:%20Insights%20from%20Numerical%20Analysis%20and%20Magneto-Electroluminescence%20Characterization&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Hakjun&rft.date=2024-05-22&rft.volume=16&rft.issue=20&rft.spage=26468&rft.epage=26477&rft.pages=26468-26477&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05175&rft_dat=%3Cproquest_cross%3E3054840145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054840145&rft_id=info:pmid/38739879&rfr_iscdi=true