Multimodal MRI segmentation of key structures for microvascular decompression via knowledge-driven mutual distillation and topological constraints

Purpose Microvascular decompression (MVD) is a widely used neurosurgical intervention for the treatment of cranial nerves compression. Segmentation of MVD-related structures, including the brainstem, nerves, arteries, and veins, is critical for preoperative planning and intraoperative decision-makin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2024-07, Vol.19 (7), p.1329-1338
Hauptverfasser: Tu, Renzhe, Zhang, Doudou, Li, Caizi, Xiao, Linxia, Zhang, Yong, Cai, Xiaodong, Si, Weixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Microvascular decompression (MVD) is a widely used neurosurgical intervention for the treatment of cranial nerves compression. Segmentation of MVD-related structures, including the brainstem, nerves, arteries, and veins, is critical for preoperative planning and intraoperative decision-making. Automatically segmenting structures related to MVD is still challenging for current methods due to the limited information from a single modality and the complex topology of vessels and nerves. Methods Considering that it is hard to distinguish MVD-related structures, especially for nerve and vessels with similar topology, we design a multimodal segmentation network with a shared encoder–dual decoder structure and propose a clinical knowledge-driven distillation scheme, allowing reliable knowledge transferred from each decoder to the other. Besides, we introduce a class-wise contrastive module to learn the discriminative representations by maximizing the distance among classes across modalities. Then, a projected topological loss based on persistent homology is proposed to constrain topological continuity. Results We evaluate the performance of our method on in-house dataset consisting of 100 paired HR-T2WI and 3D TOF-MRA volumes. Experiments indicate that our model outperforms the SOTA in DSC by 1.9% for artery, 3.3% for vein and 0.5% for nerve. Visualization results show our method attains improved continuity and less breakage, which is also consistent with intraoperative images. Conclusion Our method can comprehensively extract the distinct features from multimodal data to segment the MVD-related key structures and preserve the topological continuity, allowing surgeons precisely perceiving the patient-specific target anatomy and substantially reducing the workload of surgeons in the preoperative planning stage. Our resources will be publicly available at https://github.com/JaronTu/Multimodal_MVD_Seg .
ISSN:1861-6429
1861-6429
DOI:10.1007/s11548-024-03159-2