Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts
Plasmonic photocatalysis based on metal–semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-05, Vol.16 (21), p.10366-10376 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10376 |
---|---|
container_issue | 21 |
container_start_page | 10366 |
container_title | Nanoscale |
container_volume | 16 |
creator | Pylarinou, Martha Sakellis, Elias Tsipas, Polychronis Gardelis, Spiros Psycharis, Vassilis Dimoulas, Athanasios Stergiopoulos, Thomas Vlassis Likodimos |
description | Plasmonic photocatalysis based on metal–semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal–semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic–photonic photoeletrocatalysts. |
doi_str_mv | 10.1039/d3nr06407g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3054431431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054431431</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-44a9b9a78aef5c09c232a34711d191fe210876a6ff67782fcf961fcb503d6aa73</originalsourceid><addsrcrecordid>eNpdjstKAzEUhoMoWKsbnyDgxoWjySSTTJa1eINKN-q2nGaSaco0GScZQXDhO_iGPomjFhfCgf_Cx89B6JiSc0qYuqiY74jgRNY7aJQTTjLGZL775wXfRwcxrgkRigk2Qm8zV68S1sFr41MHyQWPwVfYNEanbghD6aM1HXYetw3ETfBOf75_tKuQvi2e1GeTHm9C5awzFb4P2aV7mvOBfzFdNDi00OAferupIUHzGlM8RHsWmmiOtjpGj9dXD9PbbDa_uZtOZlmbU5EyzkEtFcgSjC00UTpnOTAuKa2ootbklJRSgLBWSFnmVlslqNXLgrBKAEg2Rqe_u20XnnsT02LjojZNA96EPi4YKThndLgBPfmHrkPf-eG7gRJUFkLxkn0BrhNwPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061756948</pqid></control><display><type>article</type><title>Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pylarinou, Martha ; Sakellis, Elias ; Tsipas, Polychronis ; Gardelis, Spiros ; Psycharis, Vassilis ; Dimoulas, Athanasios ; Stergiopoulos, Thomas ; Vlassis Likodimos</creator><creatorcontrib>Pylarinou, Martha ; Sakellis, Elias ; Tsipas, Polychronis ; Gardelis, Spiros ; Psycharis, Vassilis ; Dimoulas, Athanasios ; Stergiopoulos, Thomas ; Vlassis Likodimos</creatorcontrib><description>Plasmonic photocatalysis based on metal–semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal–semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic–photonic photoeletrocatalysts.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr06407g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alignment ; Bismuth oxides ; Charge transfer ; Contaminants ; Degradation ; Electron transfer ; Electrons ; Gold ; Heterojunctions ; Nanoparticles ; Photocatalysis ; Photonic band gaps ; Photonic crystals ; Photons ; Plasmonics ; Separation ; Silver ; Surface plasmon resonance ; Vanadates</subject><ispartof>Nanoscale, 2024-05, Vol.16 (21), p.10366-10376</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pylarinou, Martha</creatorcontrib><creatorcontrib>Sakellis, Elias</creatorcontrib><creatorcontrib>Tsipas, Polychronis</creatorcontrib><creatorcontrib>Gardelis, Spiros</creatorcontrib><creatorcontrib>Psycharis, Vassilis</creatorcontrib><creatorcontrib>Dimoulas, Athanasios</creatorcontrib><creatorcontrib>Stergiopoulos, Thomas</creatorcontrib><creatorcontrib>Vlassis Likodimos</creatorcontrib><title>Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts</title><title>Nanoscale</title><description>Plasmonic photocatalysis based on metal–semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal–semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic–photonic photoeletrocatalysts.</description><subject>Alignment</subject><subject>Bismuth oxides</subject><subject>Charge transfer</subject><subject>Contaminants</subject><subject>Degradation</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Gold</subject><subject>Heterojunctions</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Separation</subject><subject>Silver</subject><subject>Surface plasmon resonance</subject><subject>Vanadates</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjstKAzEUhoMoWKsbnyDgxoWjySSTTJa1eINKN-q2nGaSaco0GScZQXDhO_iGPomjFhfCgf_Cx89B6JiSc0qYuqiY74jgRNY7aJQTTjLGZL775wXfRwcxrgkRigk2Qm8zV68S1sFr41MHyQWPwVfYNEanbghD6aM1HXYetw3ETfBOf75_tKuQvi2e1GeTHm9C5awzFb4P2aV7mvOBfzFdNDi00OAferupIUHzGlM8RHsWmmiOtjpGj9dXD9PbbDa_uZtOZlmbU5EyzkEtFcgSjC00UTpnOTAuKa2ootbklJRSgLBWSFnmVlslqNXLgrBKAEg2Rqe_u20XnnsT02LjojZNA96EPi4YKThndLgBPfmHrkPf-eG7gRJUFkLxkn0BrhNwPQ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Pylarinou, Martha</creator><creator>Sakellis, Elias</creator><creator>Tsipas, Polychronis</creator><creator>Gardelis, Spiros</creator><creator>Psycharis, Vassilis</creator><creator>Dimoulas, Athanasios</creator><creator>Stergiopoulos, Thomas</creator><creator>Vlassis Likodimos</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240530</creationdate><title>Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts</title><author>Pylarinou, Martha ; Sakellis, Elias ; Tsipas, Polychronis ; Gardelis, Spiros ; Psycharis, Vassilis ; Dimoulas, Athanasios ; Stergiopoulos, Thomas ; Vlassis Likodimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-44a9b9a78aef5c09c232a34711d191fe210876a6ff67782fcf961fcb503d6aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Bismuth oxides</topic><topic>Charge transfer</topic><topic>Contaminants</topic><topic>Degradation</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Gold</topic><topic>Heterojunctions</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Separation</topic><topic>Silver</topic><topic>Surface plasmon resonance</topic><topic>Vanadates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pylarinou, Martha</creatorcontrib><creatorcontrib>Sakellis, Elias</creatorcontrib><creatorcontrib>Tsipas, Polychronis</creatorcontrib><creatorcontrib>Gardelis, Spiros</creatorcontrib><creatorcontrib>Psycharis, Vassilis</creatorcontrib><creatorcontrib>Dimoulas, Athanasios</creatorcontrib><creatorcontrib>Stergiopoulos, Thomas</creatorcontrib><creatorcontrib>Vlassis Likodimos</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pylarinou, Martha</au><au>Sakellis, Elias</au><au>Tsipas, Polychronis</au><au>Gardelis, Spiros</au><au>Psycharis, Vassilis</au><au>Dimoulas, Athanasios</au><au>Stergiopoulos, Thomas</au><au>Vlassis Likodimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts</atitle><jtitle>Nanoscale</jtitle><date>2024-05-30</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>10366</spage><epage>10376</epage><pages>10366-10376</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic photocatalysis based on metal–semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal–semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic–photonic photoeletrocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr06407g</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-05, Vol.16 (21), p.10366-10376 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_3054431431 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alignment Bismuth oxides Charge transfer Contaminants Degradation Electron transfer Electrons Gold Heterojunctions Nanoparticles Photocatalysis Photonic band gaps Photonic crystals Photons Plasmonics Separation Silver Surface plasmon resonance Vanadates |
title | Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20concentration%20and%20electron%20transfer%20in%20plasmonic%E2%80%93photonic%20Ag,Au%20modified%20Mo-BiVO4%20inverse%20opal%20photoelectrocatalysts&rft.jtitle=Nanoscale&rft.au=Pylarinou,%20Martha&rft.date=2024-05-30&rft.volume=16&rft.issue=21&rft.spage=10366&rft.epage=10376&rft.pages=10366-10376&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr06407g&rft_dat=%3Cproquest%3E3054431431%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061756948&rft_id=info:pmid/&rfr_iscdi=true |