Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation
Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capabl...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2024-06, Vol.181, p.402-414 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | |
container_start_page | 402 |
container_title | Acta biomaterialia |
container_volume | 181 |
creator | Luo, Siyuan Yang, Yueyan Chen, Liuting Kannan, Perumal Ramesh Yang, Weili Zhang, Yongjia Zhao, Ruibo Liu, Xiaoli Li, Yao Kong, Xiangdong |
description | Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2024.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053981515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706124002502</els_id><sourcerecordid>3053981515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVuIiDz_ACEv2XRjt9uP2SChiEekSNmQteW2q2c8atuN7Q7Mb_DFODOBJQurrNKpe1V1m-YtwR3BhH_Yd9qU0cWux_3QYdZhgl81F0QK2QrG5ev6F0PfCszJeXOZ8x5jKkkv3zTnVAo69LK_aH4_rAUS8uDHpAOgJ8jOzND-THpZwCKvw7b2M6CgQ0xQPWNCU3163XoIxYUtMjqYo0jR8xyd92uIZQdV4oDKLsV1u0O7wxJ_OY10KRBWXVwMSAeLjjSgXJxf52P7ujmb9Jzh5qVeNY9fPn-__dbeP3y9u_103xpKSGk53kxcWksFkRNYRoZxsJxYLsdRSKaNMEyDHDYbA4yPwKXgxlgDHEs6jZxeNe9PukuKP1bIRXmXDcxz3TeuWVHM6EYSRlhFhxNqUsw5waSW5LxOB0Wwek5D7dUpDfWchsJM1TTq2LsXh3X0YP8N_T1_BT6eAKh7PjlIKhsH9ZjWJTBF2ej-7_AHV3CjAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053981515</pqid></control><display><type>article</type><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</creator><creatorcontrib>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</creatorcontrib><description>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2024.05.010</identifier><identifier>PMID: 38734282</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cancer metalloimmunotherapy ; Cell Line, Tumor ; cGAS-STING pathway ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Female ; Humans ; Immunogenic cell death ; Immunotherapy - methods ; Manganese - chemistry ; Manganese - pharmacology ; Manganese Compounds - chemistry ; Manganese Compounds - pharmacology ; Mice ; Mice, Inbred C57BL ; Nanoreactor ; Neoplasms - drug therapy ; Neoplasms - immunology ; Neoplasms - pathology ; Neoplasms - therapy ; Outer membrane vesicle ; Oxaliplatin - chemistry ; Oxaliplatin - pharmacology ; Oxides - chemistry ; Oxides - pharmacology ; Tumor hypoxia ; Tumor Hypoxia - drug effects ; Tumor Microenvironment - drug effects</subject><ispartof>Acta biomaterialia, 2024-06, Vol.181, p.402-414</ispartof><rights>2024 Acta Materialia Inc.</rights><rights>Copyright © 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2024.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38734282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Siyuan</creatorcontrib><creatorcontrib>Yang, Yueyan</creatorcontrib><creatorcontrib>Chen, Liuting</creatorcontrib><creatorcontrib>Kannan, Perumal Ramesh</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Zhang, Yongjia</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Liu, Xiaoli</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
[Display omitted]</description><subject>Animals</subject><subject>Cancer metalloimmunotherapy</subject><subject>Cell Line, Tumor</subject><subject>cGAS-STING pathway</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Immunogenic cell death</subject><subject>Immunotherapy - methods</subject><subject>Manganese - chemistry</subject><subject>Manganese - pharmacology</subject><subject>Manganese Compounds - chemistry</subject><subject>Manganese Compounds - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoreactor</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><subject>Outer membrane vesicle</subject><subject>Oxaliplatin - chemistry</subject><subject>Oxaliplatin - pharmacology</subject><subject>Oxides - chemistry</subject><subject>Oxides - pharmacology</subject><subject>Tumor hypoxia</subject><subject>Tumor Hypoxia - drug effects</subject><subject>Tumor Microenvironment - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRVuIiDz_ACEv2XRjt9uP2SChiEekSNmQteW2q2c8atuN7Q7Mb_DFODOBJQurrNKpe1V1m-YtwR3BhH_Yd9qU0cWux_3QYdZhgl81F0QK2QrG5ev6F0PfCszJeXOZ8x5jKkkv3zTnVAo69LK_aH4_rAUS8uDHpAOgJ8jOzND-THpZwCKvw7b2M6CgQ0xQPWNCU3163XoIxYUtMjqYo0jR8xyd92uIZQdV4oDKLsV1u0O7wxJ_OY10KRBWXVwMSAeLjjSgXJxf52P7ujmb9Jzh5qVeNY9fPn-__dbeP3y9u_103xpKSGk53kxcWksFkRNYRoZxsJxYLsdRSKaNMEyDHDYbA4yPwKXgxlgDHEs6jZxeNe9PukuKP1bIRXmXDcxz3TeuWVHM6EYSRlhFhxNqUsw5waSW5LxOB0Wwek5D7dUpDfWchsJM1TTq2LsXh3X0YP8N_T1_BT6eAKh7PjlIKhsH9ZjWJTBF2ej-7_AHV3CjAA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Luo, Siyuan</creator><creator>Yang, Yueyan</creator><creator>Chen, Liuting</creator><creator>Kannan, Perumal Ramesh</creator><creator>Yang, Weili</creator><creator>Zhang, Yongjia</creator><creator>Zhao, Ruibo</creator><creator>Liu, Xiaoli</creator><creator>Li, Yao</creator><creator>Kong, Xiangdong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><author>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Cancer metalloimmunotherapy</topic><topic>Cell Line, Tumor</topic><topic>cGAS-STING pathway</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Immunogenic cell death</topic><topic>Immunotherapy - methods</topic><topic>Manganese - chemistry</topic><topic>Manganese - pharmacology</topic><topic>Manganese Compounds - chemistry</topic><topic>Manganese Compounds - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoreactor</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><topic>Outer membrane vesicle</topic><topic>Oxaliplatin - chemistry</topic><topic>Oxaliplatin - pharmacology</topic><topic>Oxides - chemistry</topic><topic>Oxides - pharmacology</topic><topic>Tumor hypoxia</topic><topic>Tumor Hypoxia - drug effects</topic><topic>Tumor Microenvironment - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Siyuan</creatorcontrib><creatorcontrib>Yang, Yueyan</creatorcontrib><creatorcontrib>Chen, Liuting</creatorcontrib><creatorcontrib>Kannan, Perumal Ramesh</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Zhang, Yongjia</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Liu, Xiaoli</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Siyuan</au><au>Yang, Yueyan</au><au>Chen, Liuting</au><au>Kannan, Perumal Ramesh</au><au>Yang, Weili</au><au>Zhang, Yongjia</au><au>Zhao, Ruibo</au><au>Liu, Xiaoli</au><au>Li, Yao</au><au>Kong, Xiangdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>181</volume><spage>402</spage><epage>414</epage><pages>402-414</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38734282</pmid><doi>10.1016/j.actbio.2024.05.010</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2024-06, Vol.181, p.402-414 |
issn | 1742-7061 1878-7568 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053981515 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cancer metalloimmunotherapy Cell Line, Tumor cGAS-STING pathway Dendritic Cells - drug effects Dendritic Cells - immunology Dendritic Cells - metabolism Female Humans Immunogenic cell death Immunotherapy - methods Manganese - chemistry Manganese - pharmacology Manganese Compounds - chemistry Manganese Compounds - pharmacology Mice Mice, Inbred C57BL Nanoreactor Neoplasms - drug therapy Neoplasms - immunology Neoplasms - pathology Neoplasms - therapy Outer membrane vesicle Oxaliplatin - chemistry Oxaliplatin - pharmacology Oxides - chemistry Oxides - pharmacology Tumor hypoxia Tumor Hypoxia - drug effects Tumor Microenvironment - drug effects |
title | Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outer%20membrane%20vesicle-wrapped%20manganese%20nanoreactor%20for%20augmenting%20cancer%20metalloimmunotherapy%20through%20hypoxia%20attenuation%20and%20immune%20stimulation&rft.jtitle=Acta%20biomaterialia&rft.au=Luo,%20Siyuan&rft.date=2024-06-01&rft.volume=181&rft.spage=402&rft.epage=414&rft.pages=402-414&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2024.05.010&rft_dat=%3Cproquest_cross%3E3053981515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053981515&rft_id=info:pmid/38734282&rft_els_id=S1742706124002502&rfr_iscdi=true |