Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2024-06, Vol.181, p.402-414
Hauptverfasser: Luo, Siyuan, Yang, Yueyan, Chen, Liuting, Kannan, Perumal Ramesh, Yang, Weili, Zhang, Yongjia, Zhao, Ruibo, Liu, Xiaoli, Li, Yao, Kong, Xiangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 402
container_title Acta biomaterialia
container_volume 181
creator Luo, Siyuan
Yang, Yueyan
Chen, Liuting
Kannan, Perumal Ramesh
Yang, Weili
Zhang, Yongjia
Zhao, Ruibo
Liu, Xiaoli
Li, Yao
Kong, Xiangdong
description Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. [Display omitted]
doi_str_mv 10.1016/j.actbio.2024.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053981515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706124002502</els_id><sourcerecordid>3053981515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVuIiDz_ACEv2XRjt9uP2SChiEekSNmQteW2q2c8atuN7Q7Mb_DFODOBJQurrNKpe1V1m-YtwR3BhH_Yd9qU0cWux_3QYdZhgl81F0QK2QrG5ev6F0PfCszJeXOZ8x5jKkkv3zTnVAo69LK_aH4_rAUS8uDHpAOgJ8jOzND-THpZwCKvw7b2M6CgQ0xQPWNCU3163XoIxYUtMjqYo0jR8xyd92uIZQdV4oDKLsV1u0O7wxJ_OY10KRBWXVwMSAeLjjSgXJxf52P7ujmb9Jzh5qVeNY9fPn-__dbeP3y9u_103xpKSGk53kxcWksFkRNYRoZxsJxYLsdRSKaNMEyDHDYbA4yPwKXgxlgDHEs6jZxeNe9PukuKP1bIRXmXDcxz3TeuWVHM6EYSRlhFhxNqUsw5waSW5LxOB0Wwek5D7dUpDfWchsJM1TTq2LsXh3X0YP8N_T1_BT6eAKh7PjlIKhsH9ZjWJTBF2ej-7_AHV3CjAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053981515</pqid></control><display><type>article</type><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</creator><creatorcontrib>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</creatorcontrib><description>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2024.05.010</identifier><identifier>PMID: 38734282</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cancer metalloimmunotherapy ; Cell Line, Tumor ; cGAS-STING pathway ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Female ; Humans ; Immunogenic cell death ; Immunotherapy - methods ; Manganese - chemistry ; Manganese - pharmacology ; Manganese Compounds - chemistry ; Manganese Compounds - pharmacology ; Mice ; Mice, Inbred C57BL ; Nanoreactor ; Neoplasms - drug therapy ; Neoplasms - immunology ; Neoplasms - pathology ; Neoplasms - therapy ; Outer membrane vesicle ; Oxaliplatin - chemistry ; Oxaliplatin - pharmacology ; Oxides - chemistry ; Oxides - pharmacology ; Tumor hypoxia ; Tumor Hypoxia - drug effects ; Tumor Microenvironment - drug effects</subject><ispartof>Acta biomaterialia, 2024-06, Vol.181, p.402-414</ispartof><rights>2024 Acta Materialia Inc.</rights><rights>Copyright © 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2024.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38734282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Siyuan</creatorcontrib><creatorcontrib>Yang, Yueyan</creatorcontrib><creatorcontrib>Chen, Liuting</creatorcontrib><creatorcontrib>Kannan, Perumal Ramesh</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Zhang, Yongjia</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Liu, Xiaoli</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. [Display omitted]</description><subject>Animals</subject><subject>Cancer metalloimmunotherapy</subject><subject>Cell Line, Tumor</subject><subject>cGAS-STING pathway</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Immunogenic cell death</subject><subject>Immunotherapy - methods</subject><subject>Manganese - chemistry</subject><subject>Manganese - pharmacology</subject><subject>Manganese Compounds - chemistry</subject><subject>Manganese Compounds - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoreactor</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><subject>Outer membrane vesicle</subject><subject>Oxaliplatin - chemistry</subject><subject>Oxaliplatin - pharmacology</subject><subject>Oxides - chemistry</subject><subject>Oxides - pharmacology</subject><subject>Tumor hypoxia</subject><subject>Tumor Hypoxia - drug effects</subject><subject>Tumor Microenvironment - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRVuIiDz_ACEv2XRjt9uP2SChiEekSNmQteW2q2c8atuN7Q7Mb_DFODOBJQurrNKpe1V1m-YtwR3BhH_Yd9qU0cWux_3QYdZhgl81F0QK2QrG5ev6F0PfCszJeXOZ8x5jKkkv3zTnVAo69LK_aH4_rAUS8uDHpAOgJ8jOzND-THpZwCKvw7b2M6CgQ0xQPWNCU3163XoIxYUtMjqYo0jR8xyd92uIZQdV4oDKLsV1u0O7wxJ_OY10KRBWXVwMSAeLjjSgXJxf52P7ujmb9Jzh5qVeNY9fPn-__dbeP3y9u_103xpKSGk53kxcWksFkRNYRoZxsJxYLsdRSKaNMEyDHDYbA4yPwKXgxlgDHEs6jZxeNe9PukuKP1bIRXmXDcxz3TeuWVHM6EYSRlhFhxNqUsw5waSW5LxOB0Wwek5D7dUpDfWchsJM1TTq2LsXh3X0YP8N_T1_BT6eAKh7PjlIKhsH9ZjWJTBF2ej-7_AHV3CjAA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Luo, Siyuan</creator><creator>Yang, Yueyan</creator><creator>Chen, Liuting</creator><creator>Kannan, Perumal Ramesh</creator><creator>Yang, Weili</creator><creator>Zhang, Yongjia</creator><creator>Zhao, Ruibo</creator><creator>Liu, Xiaoli</creator><creator>Li, Yao</creator><creator>Kong, Xiangdong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</title><author>Luo, Siyuan ; Yang, Yueyan ; Chen, Liuting ; Kannan, Perumal Ramesh ; Yang, Weili ; Zhang, Yongjia ; Zhao, Ruibo ; Liu, Xiaoli ; Li, Yao ; Kong, Xiangdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-609f68dd3718fed514b4d61d68bb785ac7c5ae8499ce56be6876ccdce6083fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Cancer metalloimmunotherapy</topic><topic>Cell Line, Tumor</topic><topic>cGAS-STING pathway</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Immunogenic cell death</topic><topic>Immunotherapy - methods</topic><topic>Manganese - chemistry</topic><topic>Manganese - pharmacology</topic><topic>Manganese Compounds - chemistry</topic><topic>Manganese Compounds - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoreactor</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><topic>Outer membrane vesicle</topic><topic>Oxaliplatin - chemistry</topic><topic>Oxaliplatin - pharmacology</topic><topic>Oxides - chemistry</topic><topic>Oxides - pharmacology</topic><topic>Tumor hypoxia</topic><topic>Tumor Hypoxia - drug effects</topic><topic>Tumor Microenvironment - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Siyuan</creatorcontrib><creatorcontrib>Yang, Yueyan</creatorcontrib><creatorcontrib>Chen, Liuting</creatorcontrib><creatorcontrib>Kannan, Perumal Ramesh</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Zhang, Yongjia</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Liu, Xiaoli</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Siyuan</au><au>Yang, Yueyan</au><au>Chen, Liuting</au><au>Kannan, Perumal Ramesh</au><au>Yang, Weili</au><au>Zhang, Yongjia</au><au>Zhao, Ruibo</au><au>Liu, Xiaoli</au><au>Li, Yao</au><au>Kong, Xiangdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>181</volume><spage>402</spage><epage>414</epage><pages>402-414</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38734282</pmid><doi>10.1016/j.actbio.2024.05.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2024-06, Vol.181, p.402-414
issn 1742-7061
1878-7568
1878-7568
language eng
recordid cdi_proquest_miscellaneous_3053981515
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Cancer metalloimmunotherapy
Cell Line, Tumor
cGAS-STING pathway
Dendritic Cells - drug effects
Dendritic Cells - immunology
Dendritic Cells - metabolism
Female
Humans
Immunogenic cell death
Immunotherapy - methods
Manganese - chemistry
Manganese - pharmacology
Manganese Compounds - chemistry
Manganese Compounds - pharmacology
Mice
Mice, Inbred C57BL
Nanoreactor
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - pathology
Neoplasms - therapy
Outer membrane vesicle
Oxaliplatin - chemistry
Oxaliplatin - pharmacology
Oxides - chemistry
Oxides - pharmacology
Tumor hypoxia
Tumor Hypoxia - drug effects
Tumor Microenvironment - drug effects
title Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outer%20membrane%20vesicle-wrapped%20manganese%20nanoreactor%20for%20augmenting%20cancer%20metalloimmunotherapy%20through%20hypoxia%20attenuation%20and%20immune%20stimulation&rft.jtitle=Acta%20biomaterialia&rft.au=Luo,%20Siyuan&rft.date=2024-06-01&rft.volume=181&rft.spage=402&rft.epage=414&rft.pages=402-414&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2024.05.010&rft_dat=%3Cproquest_cross%3E3053981515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053981515&rft_id=info:pmid/38734282&rft_els_id=S1742706124002502&rfr_iscdi=true