Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling

Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2024-08, Vol.221, p.125-135
Hauptverfasser: Pokharel, Marissa D., Fu, Panfeng, Garcia-Flores, Alejandro, Yegambaram, Manivannan, Lu, Qing, Sun, Xutong, Unwalla, Hoshang, Aggarwal, Saurabh, Fineman, Jeffrey R., Wang, Ting, Black, Stephen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 125
container_title Free radical biology & medicine
container_volume 221
creator Pokharel, Marissa D.
Fu, Panfeng
Garcia-Flores, Alejandro
Yegambaram, Manivannan
Lu, Qing
Sun, Xutong
Unwalla, Hoshang
Aggarwal, Saurabh
Fineman, Jeffrey R.
Wang, Ting
Black, Stephen M.
description Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes. [Display omitted] •eNAMPT disrupts endothelial barrier integrity and mitochondrial function in pulmonary endothelial cells.•Mitochondrial fission induced by eNAMPT depends on actin cytoskeleton remodeling via Rho-kinase (ROCK).•eNAMPT increases superoxide generation, subsequently activating the small GTPase activator of ROCK (RhoA) via nitration.•Activation of RhoA contributes to the effects of eNAMPT on mitochondrial network dynamics through the activation of Drp1.•Drp1 inhibition is protective against eNAMPT-induced inflammatory lung injury in mice.
doi_str_mv 10.1016/j.freeradbiomed.2024.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053981392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584924004544</els_id><sourcerecordid>3053981392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e65a47cd5f5e08a922d8310b74e6858b0f16a2e1c73f7a15f709e7eec8dc0bc13</originalsourceid><addsrcrecordid>eNqNkcFuFSEUhonR2Gv1FQyJGzczwjDMQFw1TdUmTUyMrgkDh16uM9ACU3MfwzeW8bYLd64gnO8_J4cPoXeUtJTQ4cOhdQkgaTv5uIBtO9L1LeEtofIZ2lExsqbncniOdkRI2nDRyzP0KucDIaTnTLxEZ6xCfTfIHfp9Hdysl0WXmI54XsMt9uGw1rvPWOccjdcFLP7lyx5DsLHsYfZ6xgbmGS--RLOPwabtyfmcfQxYB4sT3K8-QcaVx8GXpMtWig5_28eLv4g5lph_wgylZhMs0dbO4fY1euH0nOHN43mOfny6-n75pbn5-vn68uKmMWwUpYGB6340ljsORGjZdVYwSqaxh0FwMRFHB90BNSNzo6bcjUTCCGCENWQylJ2j96e-dyner5CLWnzettIB4poVI5xJQZnsKvrxhJoUc07g1F3yi05HRYnanKiD-seJ2pwowlV1UtNvHwet01Z7yj5JqMDVCYC67oOHpLLxEAzY-oOmKBv9fw36AyXcqcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053981392</pqid></control><display><type>article</type><title>Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pokharel, Marissa D. ; Fu, Panfeng ; Garcia-Flores, Alejandro ; Yegambaram, Manivannan ; Lu, Qing ; Sun, Xutong ; Unwalla, Hoshang ; Aggarwal, Saurabh ; Fineman, Jeffrey R. ; Wang, Ting ; Black, Stephen M.</creator><creatorcontrib>Pokharel, Marissa D. ; Fu, Panfeng ; Garcia-Flores, Alejandro ; Yegambaram, Manivannan ; Lu, Qing ; Sun, Xutong ; Unwalla, Hoshang ; Aggarwal, Saurabh ; Fineman, Jeffrey R. ; Wang, Ting ; Black, Stephen M.</creatorcontrib><description>Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes. [Display omitted] •eNAMPT disrupts endothelial barrier integrity and mitochondrial function in pulmonary endothelial cells.•Mitochondrial fission induced by eNAMPT depends on actin cytoskeleton remodeling via Rho-kinase (ROCK).•eNAMPT increases superoxide generation, subsequently activating the small GTPase activator of ROCK (RhoA) via nitration.•Activation of RhoA contributes to the effects of eNAMPT on mitochondrial network dynamics through the activation of Drp1.•Drp1 inhibition is protective against eNAMPT-induced inflammatory lung injury in mice.</description><identifier>ISSN: 0891-5849</identifier><identifier>ISSN: 1873-4596</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2024.05.019</identifier><identifier>PMID: 38734269</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acute lung injury ; Acute Lung Injury - metabolism ; Acute Lung Injury - pathology ; Animals ; Cytoskeleton ; Cytoskeleton - metabolism ; Endothelial cell ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Humans ; Lipopolysaccharides ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial bioenergetics ; Mitochondrial Dynamics ; Mitochondrial fission ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; ROS ; Signal Transduction ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism</subject><ispartof>Free radical biology &amp; medicine, 2024-08, Vol.221, p.125-135</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-e65a47cd5f5e08a922d8310b74e6858b0f16a2e1c73f7a15f709e7eec8dc0bc13</cites><orcidid>0000-0002-4524-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2024.05.019$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38734269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pokharel, Marissa D.</creatorcontrib><creatorcontrib>Fu, Panfeng</creatorcontrib><creatorcontrib>Garcia-Flores, Alejandro</creatorcontrib><creatorcontrib>Yegambaram, Manivannan</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Sun, Xutong</creatorcontrib><creatorcontrib>Unwalla, Hoshang</creatorcontrib><creatorcontrib>Aggarwal, Saurabh</creatorcontrib><creatorcontrib>Fineman, Jeffrey R.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Black, Stephen M.</creatorcontrib><title>Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes. [Display omitted] •eNAMPT disrupts endothelial barrier integrity and mitochondrial function in pulmonary endothelial cells.•Mitochondrial fission induced by eNAMPT depends on actin cytoskeleton remodeling via Rho-kinase (ROCK).•eNAMPT increases superoxide generation, subsequently activating the small GTPase activator of ROCK (RhoA) via nitration.•Activation of RhoA contributes to the effects of eNAMPT on mitochondrial network dynamics through the activation of Drp1.•Drp1 inhibition is protective against eNAMPT-induced inflammatory lung injury in mice.</description><subject>Acute lung injury</subject><subject>Acute Lung Injury - metabolism</subject><subject>Acute Lung Injury - pathology</subject><subject>Animals</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Endothelial cell</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Humans</subject><subject>Lipopolysaccharides</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial bioenergetics</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial fission</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>ROS</subject><subject>Signal Transduction</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><issn>0891-5849</issn><issn>1873-4596</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFuFSEUhonR2Gv1FQyJGzczwjDMQFw1TdUmTUyMrgkDh16uM9ACU3MfwzeW8bYLd64gnO8_J4cPoXeUtJTQ4cOhdQkgaTv5uIBtO9L1LeEtofIZ2lExsqbncniOdkRI2nDRyzP0KucDIaTnTLxEZ6xCfTfIHfp9Hdysl0WXmI54XsMt9uGw1rvPWOccjdcFLP7lyx5DsLHsYfZ6xgbmGS--RLOPwabtyfmcfQxYB4sT3K8-QcaVx8GXpMtWig5_28eLv4g5lph_wgylZhMs0dbO4fY1euH0nOHN43mOfny6-n75pbn5-vn68uKmMWwUpYGB6340ljsORGjZdVYwSqaxh0FwMRFHB90BNSNzo6bcjUTCCGCENWQylJ2j96e-dyner5CLWnzettIB4poVI5xJQZnsKvrxhJoUc07g1F3yi05HRYnanKiD-seJ2pwowlV1UtNvHwet01Z7yj5JqMDVCYC67oOHpLLxEAzY-oOmKBv9fw36AyXcqcU</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Pokharel, Marissa D.</creator><creator>Fu, Panfeng</creator><creator>Garcia-Flores, Alejandro</creator><creator>Yegambaram, Manivannan</creator><creator>Lu, Qing</creator><creator>Sun, Xutong</creator><creator>Unwalla, Hoshang</creator><creator>Aggarwal, Saurabh</creator><creator>Fineman, Jeffrey R.</creator><creator>Wang, Ting</creator><creator>Black, Stephen M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4524-6544</orcidid></search><sort><creationdate>20240820</creationdate><title>Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling</title><author>Pokharel, Marissa D. ; Fu, Panfeng ; Garcia-Flores, Alejandro ; Yegambaram, Manivannan ; Lu, Qing ; Sun, Xutong ; Unwalla, Hoshang ; Aggarwal, Saurabh ; Fineman, Jeffrey R. ; Wang, Ting ; Black, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e65a47cd5f5e08a922d8310b74e6858b0f16a2e1c73f7a15f709e7eec8dc0bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute lung injury</topic><topic>Acute Lung Injury - metabolism</topic><topic>Acute Lung Injury - pathology</topic><topic>Animals</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Endothelial cell</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Humans</topic><topic>Lipopolysaccharides</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial bioenergetics</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial fission</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>ROS</topic><topic>Signal Transduction</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokharel, Marissa D.</creatorcontrib><creatorcontrib>Fu, Panfeng</creatorcontrib><creatorcontrib>Garcia-Flores, Alejandro</creatorcontrib><creatorcontrib>Yegambaram, Manivannan</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Sun, Xutong</creatorcontrib><creatorcontrib>Unwalla, Hoshang</creatorcontrib><creatorcontrib>Aggarwal, Saurabh</creatorcontrib><creatorcontrib>Fineman, Jeffrey R.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Black, Stephen M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokharel, Marissa D.</au><au>Fu, Panfeng</au><au>Garcia-Flores, Alejandro</au><au>Yegambaram, Manivannan</au><au>Lu, Qing</au><au>Sun, Xutong</au><au>Unwalla, Hoshang</au><au>Aggarwal, Saurabh</au><au>Fineman, Jeffrey R.</au><au>Wang, Ting</au><au>Black, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>221</volume><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0891-5849</issn><issn>1873-4596</issn><eissn>1873-4596</eissn><abstract>Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes. [Display omitted] •eNAMPT disrupts endothelial barrier integrity and mitochondrial function in pulmonary endothelial cells.•Mitochondrial fission induced by eNAMPT depends on actin cytoskeleton remodeling via Rho-kinase (ROCK).•eNAMPT increases superoxide generation, subsequently activating the small GTPase activator of ROCK (RhoA) via nitration.•Activation of RhoA contributes to the effects of eNAMPT on mitochondrial network dynamics through the activation of Drp1.•Drp1 inhibition is protective against eNAMPT-induced inflammatory lung injury in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38734269</pmid><doi>10.1016/j.freeradbiomed.2024.05.019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4524-6544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2024-08, Vol.221, p.125-135
issn 0891-5849
1873-4596
1873-4596
language eng
recordid cdi_proquest_miscellaneous_3053981392
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acute lung injury
Acute Lung Injury - metabolism
Acute Lung Injury - pathology
Animals
Cytoskeleton
Cytoskeleton - metabolism
Endothelial cell
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelial Cells - pathology
Humans
Lipopolysaccharides
Male
Mice
Mice, Inbred C57BL
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial bioenergetics
Mitochondrial Dynamics
Mitochondrial fission
rho-Associated Kinases - metabolism
rhoA GTP-Binding Protein - metabolism
ROS
Signal Transduction
Toll-Like Receptor 4 - genetics
Toll-Like Receptor 4 - metabolism
title Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammatory%20lung%20injury%20is%20associated%20with%20endothelial%20cell%20mitochondrial%20fission%20and%20requires%20the%20nitration%20of%20RhoA%20and%20cytoskeletal%20remodeling&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Pokharel,%20Marissa%20D.&rft.date=2024-08-20&rft.volume=221&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2024.05.019&rft_dat=%3Cproquest_cross%3E3053981392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053981392&rft_id=info:pmid/38734269&rft_els_id=S0891584924004544&rfr_iscdi=true