Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid

Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and backgr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-05, Vol.PP, p.1-12
Hauptverfasser: Zou, Chengyi, Wan, Shuai, Blanch, Marc Gorriz, Murn, Luka, Mrak, Marta, Sock, Juil, Yang, Fei, Herranz, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on visualization and computer graphics
container_volume PP
creator Zou, Chengyi
Wan, Shuai
Blanch, Marc Gorriz
Murn, Luka
Mrak, Marta
Sock, Juil
Yang, Fei
Herranz, Luis
description Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods.
doi_str_mv 10.1109/TVCG.2024.3398791
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053979793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10526459</ieee_id><sourcerecordid>3053979793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-73e4742775da162ce9aff50012b85bd1ac6db5be5326eaca7524afac0eae89153</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRbK3-AEEkj76k7iWbzT6WWKsQULD2NUw2E13JzVzU-utNaBUZmBmGcw7DR8g5o3PGqL5eb8LVnFPuzYXQgdLsgEyZ9phLJfUPh50q5XKf-xNy0rZvlDLPC_QxmYhAca44nZJNZF9eu08cu3ODWDvLLyzqHBonrPKqsd_Q2ap0Piw4T1hA2VnjLLoOy_HsrnqbYupEMDiMhdJ53DZQ2PSUHGWQt3i2nzPyfLtch3du9LC6DxeRa1igO1cJ9JTHlZIpMJ8b1JBlcviTJ4FMUgbGTxOZoBTcRzCgJPcgA0MRMNBMihm52uXWTfXeY9vFhW0N5jmUWPVtLKgUWg0lBinbSU1TtW2DWVw3toBmGzMajzjjEWc84oz3OAfP5T6-TwpM_xy__AbBxU5gEfFfoOS-J7X4AWPnemc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053979793</pqid></control><display><type>article</type><title>Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Chengyi ; Wan, Shuai ; Blanch, Marc Gorriz ; Murn, Luka ; Mrak, Marta ; Sock, Juil ; Yang, Fei ; Herranz, Luis</creator><creatorcontrib>Zou, Chengyi ; Wan, Shuai ; Blanch, Marc Gorriz ; Murn, Luka ; Mrak, Marta ; Sock, Juil ; Yang, Fei ; Herranz, Luis</creatorcontrib><description>Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3398791</identifier><identifier>PMID: 38722720</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>attention mechanism ; Exemplar-based colorization ; Feature extraction ; Gray-scale ; Image color analysis ; Laplace equations ; Laplacian pyramid network ; semantic guidance ; Semantics ; Task analysis ; Transformers</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-05, Vol.PP, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8617-149X ; 0000-0002-5780-4777 ; 0000-0003-4099-6511 ; 0000-0002-7777-0252 ; 0000-0002-7022-3395 ; 0009-0001-9186-6592 ; 0000-0002-7636-4981 ; 0000-0001-9041-647X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10526459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10526459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38722720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Chengyi</creatorcontrib><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Blanch, Marc Gorriz</creatorcontrib><creatorcontrib>Murn, Luka</creatorcontrib><creatorcontrib>Mrak, Marta</creatorcontrib><creatorcontrib>Sock, Juil</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Herranz, Luis</creatorcontrib><title>Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods.</description><subject>attention mechanism</subject><subject>Exemplar-based colorization</subject><subject>Feature extraction</subject><subject>Gray-scale</subject><subject>Image color analysis</subject><subject>Laplace equations</subject><subject>Laplacian pyramid network</subject><subject>semantic guidance</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLw0AQhRdRbK3-AEEkj76k7iWbzT6WWKsQULD2NUw2E13JzVzU-utNaBUZmBmGcw7DR8g5o3PGqL5eb8LVnFPuzYXQgdLsgEyZ9phLJfUPh50q5XKf-xNy0rZvlDLPC_QxmYhAca44nZJNZF9eu08cu3ODWDvLLyzqHBonrPKqsd_Q2ap0Piw4T1hA2VnjLLoOy_HsrnqbYupEMDiMhdJ53DZQ2PSUHGWQt3i2nzPyfLtch3du9LC6DxeRa1igO1cJ9JTHlZIpMJ8b1JBlcviTJ4FMUgbGTxOZoBTcRzCgJPcgA0MRMNBMihm52uXWTfXeY9vFhW0N5jmUWPVtLKgUWg0lBinbSU1TtW2DWVw3toBmGzMajzjjEWc84oz3OAfP5T6-TwpM_xy__AbBxU5gEfFfoOS-J7X4AWPnemc</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Zou, Chengyi</creator><creator>Wan, Shuai</creator><creator>Blanch, Marc Gorriz</creator><creator>Murn, Luka</creator><creator>Mrak, Marta</creator><creator>Sock, Juil</creator><creator>Yang, Fei</creator><creator>Herranz, Luis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8617-149X</orcidid><orcidid>https://orcid.org/0000-0002-5780-4777</orcidid><orcidid>https://orcid.org/0000-0003-4099-6511</orcidid><orcidid>https://orcid.org/0000-0002-7777-0252</orcidid><orcidid>https://orcid.org/0000-0002-7022-3395</orcidid><orcidid>https://orcid.org/0009-0001-9186-6592</orcidid><orcidid>https://orcid.org/0000-0002-7636-4981</orcidid><orcidid>https://orcid.org/0000-0001-9041-647X</orcidid></search><sort><creationdate>20240509</creationdate><title>Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid</title><author>Zou, Chengyi ; Wan, Shuai ; Blanch, Marc Gorriz ; Murn, Luka ; Mrak, Marta ; Sock, Juil ; Yang, Fei ; Herranz, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-73e4742775da162ce9aff50012b85bd1ac6db5be5326eaca7524afac0eae89153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attention mechanism</topic><topic>Exemplar-based colorization</topic><topic>Feature extraction</topic><topic>Gray-scale</topic><topic>Image color analysis</topic><topic>Laplace equations</topic><topic>Laplacian pyramid network</topic><topic>semantic guidance</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Chengyi</creatorcontrib><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Blanch, Marc Gorriz</creatorcontrib><creatorcontrib>Murn, Luka</creatorcontrib><creatorcontrib>Mrak, Marta</creatorcontrib><creatorcontrib>Sock, Juil</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Herranz, Luis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Chengyi</au><au>Wan, Shuai</au><au>Blanch, Marc Gorriz</au><au>Murn, Luka</au><au>Mrak, Marta</au><au>Sock, Juil</au><au>Yang, Fei</au><au>Herranz, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-05-09</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38722720</pmid><doi>10.1109/TVCG.2024.3398791</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8617-149X</orcidid><orcidid>https://orcid.org/0000-0002-5780-4777</orcidid><orcidid>https://orcid.org/0000-0003-4099-6511</orcidid><orcidid>https://orcid.org/0000-0002-7777-0252</orcidid><orcidid>https://orcid.org/0000-0002-7022-3395</orcidid><orcidid>https://orcid.org/0009-0001-9186-6592</orcidid><orcidid>https://orcid.org/0000-0002-7636-4981</orcidid><orcidid>https://orcid.org/0000-0001-9041-647X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-05, Vol.PP, p.1-12
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_3053979793
source IEEE Electronic Library (IEL)
subjects attention mechanism
Exemplar-based colorization
Feature extraction
Gray-scale
Image color analysis
Laplace equations
Laplacian pyramid network
semantic guidance
Semantics
Task analysis
Transformers
title Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Deep%20Exemplar%20Colorization%20via%20Semantic%20Attention-Guided%20Laplacian%20Pyramid&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zou,%20Chengyi&rft.date=2024-05-09&rft.volume=PP&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3398791&rft_dat=%3Cproquest_RIE%3E3053979793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053979793&rft_id=info:pmid/38722720&rft_ieee_id=10526459&rfr_iscdi=true