Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach
Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In...
Gespeichert in:
Veröffentlicht in: | Materials 2024-05, Vol.17 (9), p.2044 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2044 |
container_title | Materials |
container_volume | 17 |
creator | Zarrouk, Tarik Salhi, Jamal-Eddine Nouari, Mohammed Bouali, Abdelilah |
description | Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In order to remedy these shortcomings, this study proposes to integrate RUM (rotary ultrasonic machining) technology, which consists of applying ultrasonic vibrations along the axis of rotation of the cutter. To fully understand the milling process by ultrasonic vibrations of the NHC structure, a 3D numerical finite element model is developed using Abaqus/Explicit software. The results of the comparative analysis between the components of the simulated cutting forces and those from the experiment indicate a close agreement between the developed model and the experimental results. Based on the developed numerical model, this study comprehensively analyzes the influence of the ultrasonic vibration amplitude on various aspects, such as stress distribution in the cutting zone, chip size, the quality of the machined surface and the components of the cutting force. Ultimately, the results demonstrate that the application of ultrasonic vibrations leads to a reduction of up to 50% in the components of the cutting force, as well as an improvement in the quality of the machined surface and a reduction in the size of chips. |
doi_str_mv | 10.3390/ma17092044 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053978535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793565357</galeid><sourcerecordid>A793565357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3c58d3240ae8d7788ce004799962f4c702b143d88d0649dbe9de27164ef4ec6c3</originalsourceid><addsrcrecordid>eNpdkcFuGyEQhlGVqonSXPoAEVIuVSSnsLAL9LaynKZS2kZRfV5hdjYmWsCFtRQ_QV-7YzltqsCBAb75Gf4h5ANnV0IY9ilYrpipmJRvyAk3pplxI-XRf_ExOSvlkeEQguvKvCPHQivBdM1OyO9FXNvofHyg0xroN-vWPu53d5CHlAPeAU0D_Z4CPNGbFGHnUljReQqbVPwEhS7Lnr9Pk807uhynbEuK3r1ofaYtvcZoAroYIUCcaBvtuCu-0HazyQnB9-TtYMcCZ8_rKVleL37Ob2a3P758nbe3MyekmWbC1boXlWQWdK-U1g4Yk8rgX6tBOsWqFZei17pnjTT9CkwPleKNhEGCa5w4JR8Puvjsry2UqQu-OBhHGyFtSydYLYzStagRvXiFPqZtxsIPFFecswapqwP1YEfofBwSGuBw9hC8Q78Gj-etMqJuUFVhwuUhweVUSoah22Qf0LuOs27f0u6lpQifP9ewXQXo_6F_Gyj-ANx7mzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053171106</pqid></control><display><type>article</type><title>Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zarrouk, Tarik ; Salhi, Jamal-Eddine ; Nouari, Mohammed ; Bouali, Abdelilah</creator><creatorcontrib>Zarrouk, Tarik ; Salhi, Jamal-Eddine ; Nouari, Mohammed ; Bouali, Abdelilah</creatorcontrib><description>Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In order to remedy these shortcomings, this study proposes to integrate RUM (rotary ultrasonic machining) technology, which consists of applying ultrasonic vibrations along the axis of rotation of the cutter. To fully understand the milling process by ultrasonic vibrations of the NHC structure, a 3D numerical finite element model is developed using Abaqus/Explicit software. The results of the comparative analysis between the components of the simulated cutting forces and those from the experiment indicate a close agreement between the developed model and the experimental results. Based on the developed numerical model, this study comprehensively analyzes the influence of the ultrasonic vibration amplitude on various aspects, such as stress distribution in the cutting zone, chip size, the quality of the machined surface and the components of the cutting force. Ultimately, the results demonstrate that the application of ultrasonic vibrations leads to a reduction of up to 50% in the components of the cutting force, as well as an improvement in the quality of the machined surface and a reduction in the size of chips.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17092044</identifier><identifier>PMID: 38730850</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace industry ; Analysis ; Automobile industry ; Axes of rotation ; Composite materials ; Cutting force ; Cutting parameters ; Cutting tools ; Dielectric properties ; Finite element analysis ; Finite element method ; Influence ; Liquors ; Machining ; Manufacturing ; Material properties ; Mathematical models ; Milling (machining) ; Numerical models ; Stress distribution ; Titanium alloys ; Ultrasonic machining ; Ultrasonic vibration ; Vibration</subject><ispartof>Materials, 2024-05, Vol.17 (9), p.2044</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-3c58d3240ae8d7788ce004799962f4c702b143d88d0649dbe9de27164ef4ec6c3</cites><orcidid>0000-0002-2955-1864 ; 0000-0003-0470-5158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38730850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarrouk, Tarik</creatorcontrib><creatorcontrib>Salhi, Jamal-Eddine</creatorcontrib><creatorcontrib>Nouari, Mohammed</creatorcontrib><creatorcontrib>Bouali, Abdelilah</creatorcontrib><title>Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In order to remedy these shortcomings, this study proposes to integrate RUM (rotary ultrasonic machining) technology, which consists of applying ultrasonic vibrations along the axis of rotation of the cutter. To fully understand the milling process by ultrasonic vibrations of the NHC structure, a 3D numerical finite element model is developed using Abaqus/Explicit software. The results of the comparative analysis between the components of the simulated cutting forces and those from the experiment indicate a close agreement between the developed model and the experimental results. Based on the developed numerical model, this study comprehensively analyzes the influence of the ultrasonic vibration amplitude on various aspects, such as stress distribution in the cutting zone, chip size, the quality of the machined surface and the components of the cutting force. Ultimately, the results demonstrate that the application of ultrasonic vibrations leads to a reduction of up to 50% in the components of the cutting force, as well as an improvement in the quality of the machined surface and a reduction in the size of chips.</description><subject>Aerospace industry</subject><subject>Analysis</subject><subject>Automobile industry</subject><subject>Axes of rotation</subject><subject>Composite materials</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Cutting tools</subject><subject>Dielectric properties</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Influence</subject><subject>Liquors</subject><subject>Machining</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Milling (machining)</subject><subject>Numerical models</subject><subject>Stress distribution</subject><subject>Titanium alloys</subject><subject>Ultrasonic machining</subject><subject>Ultrasonic vibration</subject><subject>Vibration</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkcFuGyEQhlGVqonSXPoAEVIuVSSnsLAL9LaynKZS2kZRfV5hdjYmWsCFtRQ_QV-7YzltqsCBAb75Gf4h5ANnV0IY9ilYrpipmJRvyAk3pplxI-XRf_ExOSvlkeEQguvKvCPHQivBdM1OyO9FXNvofHyg0xroN-vWPu53d5CHlAPeAU0D_Z4CPNGbFGHnUljReQqbVPwEhS7Lnr9Pk807uhynbEuK3r1ofaYtvcZoAroYIUCcaBvtuCu-0HazyQnB9-TtYMcCZ8_rKVleL37Ob2a3P758nbe3MyekmWbC1boXlWQWdK-U1g4Yk8rgX6tBOsWqFZei17pnjTT9CkwPleKNhEGCa5w4JR8Puvjsry2UqQu-OBhHGyFtSydYLYzStagRvXiFPqZtxsIPFFecswapqwP1YEfofBwSGuBw9hC8Q78Gj-etMqJuUFVhwuUhweVUSoah22Qf0LuOs27f0u6lpQifP9ewXQXo_6F_Gyj-ANx7mzY</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zarrouk, Tarik</creator><creator>Salhi, Jamal-Eddine</creator><creator>Nouari, Mohammed</creator><creator>Bouali, Abdelilah</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2955-1864</orcidid><orcidid>https://orcid.org/0000-0003-0470-5158</orcidid></search><sort><creationdate>20240501</creationdate><title>Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach</title><author>Zarrouk, Tarik ; Salhi, Jamal-Eddine ; Nouari, Mohammed ; Bouali, Abdelilah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3c58d3240ae8d7788ce004799962f4c702b143d88d0649dbe9de27164ef4ec6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace industry</topic><topic>Analysis</topic><topic>Automobile industry</topic><topic>Axes of rotation</topic><topic>Composite materials</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Cutting tools</topic><topic>Dielectric properties</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Influence</topic><topic>Liquors</topic><topic>Machining</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Milling (machining)</topic><topic>Numerical models</topic><topic>Stress distribution</topic><topic>Titanium alloys</topic><topic>Ultrasonic machining</topic><topic>Ultrasonic vibration</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarrouk, Tarik</creatorcontrib><creatorcontrib>Salhi, Jamal-Eddine</creatorcontrib><creatorcontrib>Nouari, Mohammed</creatorcontrib><creatorcontrib>Bouali, Abdelilah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarrouk, Tarik</au><au>Salhi, Jamal-Eddine</au><au>Nouari, Mohammed</au><au>Bouali, Abdelilah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>17</volume><issue>9</issue><spage>2044</spage><pages>2044-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In order to remedy these shortcomings, this study proposes to integrate RUM (rotary ultrasonic machining) technology, which consists of applying ultrasonic vibrations along the axis of rotation of the cutter. To fully understand the milling process by ultrasonic vibrations of the NHC structure, a 3D numerical finite element model is developed using Abaqus/Explicit software. The results of the comparative analysis between the components of the simulated cutting forces and those from the experiment indicate a close agreement between the developed model and the experimental results. Based on the developed numerical model, this study comprehensively analyzes the influence of the ultrasonic vibration amplitude on various aspects, such as stress distribution in the cutting zone, chip size, the quality of the machined surface and the components of the cutting force. Ultimately, the results demonstrate that the application of ultrasonic vibrations leads to a reduction of up to 50% in the components of the cutting force, as well as an improvement in the quality of the machined surface and a reduction in the size of chips.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38730850</pmid><doi>10.3390/ma17092044</doi><orcidid>https://orcid.org/0000-0002-2955-1864</orcidid><orcidid>https://orcid.org/0000-0003-0470-5158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-05, Vol.17 (9), p.2044 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053978535 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerospace industry Analysis Automobile industry Axes of rotation Composite materials Cutting force Cutting parameters Cutting tools Dielectric properties Finite element analysis Finite element method Influence Liquors Machining Manufacturing Material properties Mathematical models Milling (machining) Numerical models Stress distribution Titanium alloys Ultrasonic machining Ultrasonic vibration Vibration |
title | Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Machining%20Performance%20of%20Nomex%20Honeycomb%20Composites%20Using%20Rotary%20Ultrasonic%20Machining:%20A%20Finite%20Element%20Analysis%20Approach&rft.jtitle=Materials&rft.au=Zarrouk,%20Tarik&rft.date=2024-05-01&rft.volume=17&rft.issue=9&rft.spage=2044&rft.pages=2044-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17092044&rft_dat=%3Cgale_proqu%3EA793565357%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053171106&rft_id=info:pmid/38730850&rft_galeid=A793565357&rfr_iscdi=true |