Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex
In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits...
Gespeichert in:
Veröffentlicht in: | ChemPlusChem (Weinheim, Germany) Germany), 2024-09, Vol.89 (9), p.e202400109-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e202400109 |
container_title | ChemPlusChem (Weinheim, Germany) |
container_volume | 89 |
creator | Pissas, Michael Ferentinos, Eleftherios Kyritsis, Panayotis Sanakis, Yiannis |
description | In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies.
The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1. |
doi_str_mv | 10.1002/cplu.202400109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053975824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117968329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2369-3d1ec92f2550d53799ede5de1abc2af19bedeaf628430900e3061ef3abcffad93</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxYMoWLRXzwEvXlJnd7NJ9-BBgtVARbHt1WWbndQt22zMH9p68iP4Gf0kplSKOJd5j3n8GJ7nXRAYEAB6nZW2HVCgIQABceT1KBE0iDhEx3_0qdev6yV0EwGnMet5ryODVn9_fqWFbjPU_sS6tf-oFgU25kM1xhX-C1q12UuX-8qfYlOpN9SVsv7khvojTNNJ2DESVzTKFKZY-IlblRY3595JrmyN_d995s1Gd9PkIRg_3afJ7TgoKYtEwDTBTNCccg6as1gI1Mg1EjXPqMqJmHde5REdhgwEADKICOasO-e50oKdeVd7blm59xbrRq5MnaG1qkDX1pIBZyLmQxp20ct_0aVrq6L7TjJCYhENGd0BxT61Nha3sqzMSlVbSUDu6pa7uuWhbpk8j2cHx34AQkp3vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117968329</pqid></control><display><type>article</type><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</creator><creatorcontrib>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</creatorcontrib><description>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies.
The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.202400109</identifier><language>eng</language><publisher>Prague: Blackwell Publishing Ltd</publisher><subject>AC Magnetic Susceptibility ; Alternating current ; Direct current ; Electron paramagnetic resonance ; Helium ; Liquid helium ; Magnetic fields ; Magnetic induction ; Magnetic measurement ; Magnetic permeability ; Magnetic properties ; Magnetization ; Molecular Magnetism ; Quantum tunnelling ; Relaxation time ; Single Ion Magnets ; Spin Relaxation ; Temperature dependence ; Tetrahedral High Spin Ferrous</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2024-09, Vol.89 (9), p.e202400109-n/a</ispartof><rights>2024 The Authors. ChemPlusChem published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. ChemPlusChem published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2672-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.202400109$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.202400109$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pissas, Michael</creatorcontrib><creatorcontrib>Ferentinos, Eleftherios</creatorcontrib><creatorcontrib>Kyritsis, Panayotis</creatorcontrib><creatorcontrib>Sanakis, Yiannis</creatorcontrib><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><title>ChemPlusChem (Weinheim, Germany)</title><description>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies.
The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</description><subject>AC Magnetic Susceptibility</subject><subject>Alternating current</subject><subject>Direct current</subject><subject>Electron paramagnetic resonance</subject><subject>Helium</subject><subject>Liquid helium</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetic measurement</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Molecular Magnetism</subject><subject>Quantum tunnelling</subject><subject>Relaxation time</subject><subject>Single Ion Magnets</subject><subject>Spin Relaxation</subject><subject>Temperature dependence</subject><subject>Tetrahedral High Spin Ferrous</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkE9Lw0AQxYMoWLRXzwEvXlJnd7NJ9-BBgtVARbHt1WWbndQt22zMH9p68iP4Gf0kplSKOJd5j3n8GJ7nXRAYEAB6nZW2HVCgIQABceT1KBE0iDhEx3_0qdev6yV0EwGnMet5ryODVn9_fqWFbjPU_sS6tf-oFgU25kM1xhX-C1q12UuX-8qfYlOpN9SVsv7khvojTNNJ2DESVzTKFKZY-IlblRY3595JrmyN_d995s1Gd9PkIRg_3afJ7TgoKYtEwDTBTNCccg6as1gI1Mg1EjXPqMqJmHde5REdhgwEADKICOasO-e50oKdeVd7blm59xbrRq5MnaG1qkDX1pIBZyLmQxp20ct_0aVrq6L7TjJCYhENGd0BxT61Nha3sqzMSlVbSUDu6pa7uuWhbpk8j2cHx34AQkp3vQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Pissas, Michael</creator><creator>Ferentinos, Eleftherios</creator><creator>Kyritsis, Panayotis</creator><creator>Sanakis, Yiannis</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2672-8273</orcidid></search><sort><creationdate>202409</creationdate><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><author>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2369-3d1ec92f2550d53799ede5de1abc2af19bedeaf628430900e3061ef3abcffad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AC Magnetic Susceptibility</topic><topic>Alternating current</topic><topic>Direct current</topic><topic>Electron paramagnetic resonance</topic><topic>Helium</topic><topic>Liquid helium</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetic measurement</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Molecular Magnetism</topic><topic>Quantum tunnelling</topic><topic>Relaxation time</topic><topic>Single Ion Magnets</topic><topic>Spin Relaxation</topic><topic>Temperature dependence</topic><topic>Tetrahedral High Spin Ferrous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pissas, Michael</creatorcontrib><creatorcontrib>Ferentinos, Eleftherios</creatorcontrib><creatorcontrib>Kyritsis, Panayotis</creatorcontrib><creatorcontrib>Sanakis, Yiannis</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pissas, Michael</au><au>Ferentinos, Eleftherios</au><au>Kyritsis, Panayotis</au><au>Sanakis, Yiannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>89</volume><issue>9</issue><spage>e202400109</spage><epage>n/a</epage><pages>e202400109-n/a</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies.
The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</abstract><cop>Prague</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cplu.202400109</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2672-8273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6506 |
ispartof | ChemPlusChem (Weinheim, Germany), 2024-09, Vol.89 (9), p.e202400109-n/a |
issn | 2192-6506 2192-6506 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053975824 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | AC Magnetic Susceptibility Alternating current Direct current Electron paramagnetic resonance Helium Liquid helium Magnetic fields Magnetic induction Magnetic measurement Magnetic permeability Magnetic properties Magnetization Molecular Magnetism Quantum tunnelling Relaxation time Single Ion Magnets Spin Relaxation Temperature dependence Tetrahedral High Spin Ferrous |
title | Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%E2%80%90Induced%20Slow%20Magnetization%20Relaxation%20of%20a%20Tetrahedral%20S=2%20FeIIS4%E2%80%90Containing%20Complex&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Pissas,%20Michael&rft.date=2024-09&rft.volume=89&rft.issue=9&rft.spage=e202400109&rft.epage=n/a&rft.pages=e202400109-n/a&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.202400109&rft_dat=%3Cproquest_wiley%3E3117968329%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117968329&rft_id=info:pmid/&rfr_iscdi=true |