Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex

In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemPlusChem (Weinheim, Germany) Germany), 2024-09, Vol.89 (9), p.e202400109-n/a
Hauptverfasser: Pissas, Michael, Ferentinos, Eleftherios, Kyritsis, Panayotis, Sanakis, Yiannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e202400109
container_title ChemPlusChem (Weinheim, Germany)
container_volume 89
creator Pissas, Michael
Ferentinos, Eleftherios
Kyritsis, Panayotis
Sanakis, Yiannis
description In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies. The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.
doi_str_mv 10.1002/cplu.202400109
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053975824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117968329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2369-3d1ec92f2550d53799ede5de1abc2af19bedeaf628430900e3061ef3abcffad93</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxYMoWLRXzwEvXlJnd7NJ9-BBgtVARbHt1WWbndQt22zMH9p68iP4Gf0kplSKOJd5j3n8GJ7nXRAYEAB6nZW2HVCgIQABceT1KBE0iDhEx3_0qdev6yV0EwGnMet5ryODVn9_fqWFbjPU_sS6tf-oFgU25kM1xhX-C1q12UuX-8qfYlOpN9SVsv7khvojTNNJ2DESVzTKFKZY-IlblRY3595JrmyN_d995s1Gd9PkIRg_3afJ7TgoKYtEwDTBTNCccg6as1gI1Mg1EjXPqMqJmHde5REdhgwEADKICOasO-e50oKdeVd7blm59xbrRq5MnaG1qkDX1pIBZyLmQxp20ct_0aVrq6L7TjJCYhENGd0BxT61Nha3sqzMSlVbSUDu6pa7uuWhbpk8j2cHx34AQkp3vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117968329</pqid></control><display><type>article</type><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</creator><creatorcontrib>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</creatorcontrib><description>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies. The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.202400109</identifier><language>eng</language><publisher>Prague: Blackwell Publishing Ltd</publisher><subject>AC Magnetic Susceptibility ; Alternating current ; Direct current ; Electron paramagnetic resonance ; Helium ; Liquid helium ; Magnetic fields ; Magnetic induction ; Magnetic measurement ; Magnetic permeability ; Magnetic properties ; Magnetization ; Molecular Magnetism ; Quantum tunnelling ; Relaxation time ; Single Ion Magnets ; Spin Relaxation ; Temperature dependence ; Tetrahedral High Spin Ferrous</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2024-09, Vol.89 (9), p.e202400109-n/a</ispartof><rights>2024 The Authors. ChemPlusChem published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. ChemPlusChem published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2672-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.202400109$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.202400109$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pissas, Michael</creatorcontrib><creatorcontrib>Ferentinos, Eleftherios</creatorcontrib><creatorcontrib>Kyritsis, Panayotis</creatorcontrib><creatorcontrib>Sanakis, Yiannis</creatorcontrib><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><title>ChemPlusChem (Weinheim, Germany)</title><description>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies. The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</description><subject>AC Magnetic Susceptibility</subject><subject>Alternating current</subject><subject>Direct current</subject><subject>Electron paramagnetic resonance</subject><subject>Helium</subject><subject>Liquid helium</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetic measurement</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Molecular Magnetism</subject><subject>Quantum tunnelling</subject><subject>Relaxation time</subject><subject>Single Ion Magnets</subject><subject>Spin Relaxation</subject><subject>Temperature dependence</subject><subject>Tetrahedral High Spin Ferrous</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkE9Lw0AQxYMoWLRXzwEvXlJnd7NJ9-BBgtVARbHt1WWbndQt22zMH9p68iP4Gf0kplSKOJd5j3n8GJ7nXRAYEAB6nZW2HVCgIQABceT1KBE0iDhEx3_0qdev6yV0EwGnMet5ryODVn9_fqWFbjPU_sS6tf-oFgU25kM1xhX-C1q12UuX-8qfYlOpN9SVsv7khvojTNNJ2DESVzTKFKZY-IlblRY3595JrmyN_d995s1Gd9PkIRg_3afJ7TgoKYtEwDTBTNCccg6as1gI1Mg1EjXPqMqJmHde5REdhgwEADKICOasO-e50oKdeVd7blm59xbrRq5MnaG1qkDX1pIBZyLmQxp20ct_0aVrq6L7TjJCYhENGd0BxT61Nha3sqzMSlVbSUDu6pa7uuWhbpk8j2cHx34AQkp3vQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Pissas, Michael</creator><creator>Ferentinos, Eleftherios</creator><creator>Kyritsis, Panayotis</creator><creator>Sanakis, Yiannis</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2672-8273</orcidid></search><sort><creationdate>202409</creationdate><title>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</title><author>Pissas, Michael ; Ferentinos, Eleftherios ; Kyritsis, Panayotis ; Sanakis, Yiannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2369-3d1ec92f2550d53799ede5de1abc2af19bedeaf628430900e3061ef3abcffad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AC Magnetic Susceptibility</topic><topic>Alternating current</topic><topic>Direct current</topic><topic>Electron paramagnetic resonance</topic><topic>Helium</topic><topic>Liquid helium</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetic measurement</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Molecular Magnetism</topic><topic>Quantum tunnelling</topic><topic>Relaxation time</topic><topic>Single Ion Magnets</topic><topic>Spin Relaxation</topic><topic>Temperature dependence</topic><topic>Tetrahedral High Spin Ferrous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pissas, Michael</creatorcontrib><creatorcontrib>Ferentinos, Eleftherios</creatorcontrib><creatorcontrib>Kyritsis, Panayotis</creatorcontrib><creatorcontrib>Sanakis, Yiannis</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pissas, Michael</au><au>Ferentinos, Eleftherios</au><au>Kyritsis, Panayotis</au><au>Sanakis, Yiannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>89</volume><issue>9</issue><spage>e202400109</spage><epage>n/a</epage><pages>e202400109-n/a</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2–5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero‐field splitting parameters of 1 which were previously determined by high‐ frequency and ‐field electron paramagnetic resonance and Mössbauer spectroscopies. The mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) exhibits slow magnetic relaxation in the presence of an external magnetic field, as monitored by Alternating Current (AC) magnetometry. The magnetization relaxation mechanism involves contributions from the Quantum Tunnelling of Magnetization and the Direct and Orbach processes. The energy barrier for the Orbach process relates to the zero‐field splitting of the S=2 Fe(II) complex 1.</abstract><cop>Prague</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cplu.202400109</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2672-8273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-6506
ispartof ChemPlusChem (Weinheim, Germany), 2024-09, Vol.89 (9), p.e202400109-n/a
issn 2192-6506
2192-6506
language eng
recordid cdi_proquest_miscellaneous_3053975824
source Wiley Online Library Journals Frontfile Complete
subjects AC Magnetic Susceptibility
Alternating current
Direct current
Electron paramagnetic resonance
Helium
Liquid helium
Magnetic fields
Magnetic induction
Magnetic measurement
Magnetic permeability
Magnetic properties
Magnetization
Molecular Magnetism
Quantum tunnelling
Relaxation time
Single Ion Magnets
Spin Relaxation
Temperature dependence
Tetrahedral High Spin Ferrous
title Field‐Induced Slow Magnetization Relaxation of a Tetrahedral S=2 FeIIS4‐Containing Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%E2%80%90Induced%20Slow%20Magnetization%20Relaxation%20of%20a%20Tetrahedral%20S=2%20FeIIS4%E2%80%90Containing%20Complex&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Pissas,%20Michael&rft.date=2024-09&rft.volume=89&rft.issue=9&rft.spage=e202400109&rft.epage=n/a&rft.pages=e202400109-n/a&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.202400109&rft_dat=%3Cproquest_wiley%3E3117968329%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117968329&rft_id=info:pmid/&rfr_iscdi=true