Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation

Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to “stress shielding” effects, leading to implant fail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2024-06, Vol.181, p.469-482
Hauptverfasser: Du, Peng, Cui, Zhi, Xiang, Tao, Li, Yunping, Zhang, Liang, Cai, Zeyun, Zhao, Ming, Xie, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue
container_start_page 469
container_title Acta biomaterialia
container_volume 181
creator Du, Peng
Cui, Zhi
Xiang, Tao
Li, Yunping
Zhang, Liang
Cai, Zeyun
Zhao, Ming
Xie, Guoqiang
description Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to “stress shielding” effects, leading to implant failure. In contrast, β-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are β-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus β-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/β-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/β-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/β-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/β-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/β-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/β-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the β-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus.
doi_str_mv 10.1016/j.actbio.2024.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053973691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706124002320</els_id><sourcerecordid>3053973691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-bbe51d4d7620590dfe6873c6f77887843df6273607bef35edd15e1ee9b5678443</originalsourceid><addsrcrecordid>eNp9UU1u1DAYjRCIlsINEPKSTVI7ju1kg4QqKEgV3QwbNpZjf2m-URIH26k0HIHj9CCcCQ9TWLKype_96L1XFK8ZrRhl8nJfGZt69FVN66aioqK0eVKcs1a1pRKyfZr_qqlLRSU7K17EuKeUt6xunxdnvFU172p5Xvy8XRPO-AOXO5JGIBamiVg_ryZhjxOmAzGLIzPY0SxozUTW4FcICSESXMgOv4Uv_c5khMNtLmFJ-Z5J0-QPl78eyh3-kfMRU2akMfjtbiTraCKQFMwSBx_mbOaXl8WzwUwRXj2-F8XXjx92V5_Km9vrz1fvb0rLGUtl34NgrnFK1lR01A0gW8WtHJRqc_aGu0HWikuqehi4AOeYAAbQ9ULmc8Mvircn3Zzk-wYx6RnjMbdZwG9Rcyp4lwU6lqHNCWqDjzHAoNeAswkHzag-rqD3-rSCPq6gqdB5hUx78-iw9bmXf6S_tWfAuxMAcs57hKCjRVhs7jCATdp5_L_Db-7YnoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053973691</pqid></control><display><type>article</type><title>Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Du, Peng ; Cui, Zhi ; Xiang, Tao ; Li, Yunping ; Zhang, Liang ; Cai, Zeyun ; Zhao, Ming ; Xie, Guoqiang</creator><creatorcontrib>Du, Peng ; Cui, Zhi ; Xiang, Tao ; Li, Yunping ; Zhang, Liang ; Cai, Zeyun ; Zhao, Ming ; Xie, Guoqiang</creatorcontrib><description>Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to “stress shielding” effects, leading to implant failure. In contrast, β-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are β-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus β-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/β-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/β-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/β-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/β-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/β-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/β-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the β-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2024.05.004</identifier><identifier>PMID: 38723926</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Alloys - chemistry ; Alloys - pharmacology ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Elastic Modulus ; Humans ; Low Young's modulus ; Materials Testing ; Mechanical properties ; Mice ; Niobium - chemistry ; Niobium - pharmacology ; Phase transformation ; Phase Transition ; Titanium - chemistry ; Titanium - pharmacology ; TiZrNbTa/β-Ti composite ; Zirconium - chemistry ; Zirconium - pharmacology</subject><ispartof>Acta biomaterialia, 2024-06, Vol.181, p.469-482</ispartof><rights>2024 Acta Materialia Inc.</rights><rights>Copyright © 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-bbe51d4d7620590dfe6873c6f77887843df6273607bef35edd15e1ee9b5678443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2024.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38723926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Peng</creatorcontrib><creatorcontrib>Cui, Zhi</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Li, Yunping</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cai, Zeyun</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><title>Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to “stress shielding” effects, leading to implant failure. In contrast, β-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are β-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus β-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/β-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/β-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/β-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/β-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/β-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/β-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the β-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus. [Display omitted]</description><subject>Alloys - chemistry</subject><subject>Alloys - pharmacology</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Elastic Modulus</subject><subject>Humans</subject><subject>Low Young's modulus</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>Niobium - chemistry</subject><subject>Niobium - pharmacology</subject><subject>Phase transformation</subject><subject>Phase Transition</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>TiZrNbTa/β-Ti composite</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - pharmacology</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1u1DAYjRCIlsINEPKSTVI7ju1kg4QqKEgV3QwbNpZjf2m-URIH26k0HIHj9CCcCQ9TWLKype_96L1XFK8ZrRhl8nJfGZt69FVN66aioqK0eVKcs1a1pRKyfZr_qqlLRSU7K17EuKeUt6xunxdnvFU172p5Xvy8XRPO-AOXO5JGIBamiVg_ryZhjxOmAzGLIzPY0SxozUTW4FcICSESXMgOv4Uv_c5khMNtLmFJ-Z5J0-QPl78eyh3-kfMRU2akMfjtbiTraCKQFMwSBx_mbOaXl8WzwUwRXj2-F8XXjx92V5_Km9vrz1fvb0rLGUtl34NgrnFK1lR01A0gW8WtHJRqc_aGu0HWikuqehi4AOeYAAbQ9ULmc8Mvircn3Zzk-wYx6RnjMbdZwG9Rcyp4lwU6lqHNCWqDjzHAoNeAswkHzag-rqD3-rSCPq6gqdB5hUx78-iw9bmXf6S_tWfAuxMAcs57hKCjRVhs7jCATdp5_L_Db-7YnoE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Du, Peng</creator><creator>Cui, Zhi</creator><creator>Xiang, Tao</creator><creator>Li, Yunping</creator><creator>Zhang, Liang</creator><creator>Cai, Zeyun</creator><creator>Zhao, Ming</creator><creator>Xie, Guoqiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation</title><author>Du, Peng ; Cui, Zhi ; Xiang, Tao ; Li, Yunping ; Zhang, Liang ; Cai, Zeyun ; Zhao, Ming ; Xie, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-bbe51d4d7620590dfe6873c6f77887843df6273607bef35edd15e1ee9b5678443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - pharmacology</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Elastic Modulus</topic><topic>Humans</topic><topic>Low Young's modulus</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>Niobium - chemistry</topic><topic>Niobium - pharmacology</topic><topic>Phase transformation</topic><topic>Phase Transition</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>TiZrNbTa/β-Ti composite</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Peng</creatorcontrib><creatorcontrib>Cui, Zhi</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Li, Yunping</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cai, Zeyun</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Peng</au><au>Cui, Zhi</au><au>Xiang, Tao</au><au>Li, Yunping</au><au>Zhang, Liang</au><au>Cai, Zeyun</au><au>Zhao, Ming</au><au>Xie, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>181</volume><spage>469</spage><epage>482</epage><pages>469-482</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to “stress shielding” effects, leading to implant failure. In contrast, β-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are β-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus β-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/β-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/β-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/β-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/β-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/β-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/β-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the β-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38723926</pmid><doi>10.1016/j.actbio.2024.05.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2024-06, Vol.181, p.469-482
issn 1742-7061
1878-7568
1878-7568
language eng
recordid cdi_proquest_miscellaneous_3053973691
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alloys - chemistry
Alloys - pharmacology
Animals
Biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Elastic Modulus
Humans
Low Young's modulus
Materials Testing
Mechanical properties
Mice
Niobium - chemistry
Niobium - pharmacology
Phase transformation
Phase Transition
Titanium - chemistry
Titanium - pharmacology
TiZrNbTa/β-Ti composite
Zirconium - chemistry
Zirconium - pharmacology
title Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20cell%20compatibility%20and%20mechanical%20properties%20in%20TiZrNbTa%20medium-entropy%20alloy/%CE%B2-Ti%20composites%20through%20phase%20transformation&rft.jtitle=Acta%20biomaterialia&rft.au=Du,%20Peng&rft.date=2024-06-01&rft.volume=181&rft.spage=469&rft.epage=482&rft.pages=469-482&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2024.05.004&rft_dat=%3Cproquest_cross%3E3053973691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053973691&rft_id=info:pmid/38723926&rft_els_id=S1742706124002320&rfr_iscdi=true