Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular basis of disease 2024-06, Vol.1870 (5), p.167220, Article 167220
Hauptverfasser: Lu, Zhuo, Sun, Gui-Feng, He, Kai-Yi, Zhang, Zhen, Han, Xin-Hao, Qu, Xin-Hui, Wan, Deng-Feng, Yao, Dongyuan, Tou, Fang-Fang, Han, Xiao-Jian, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 167220
container_title Biochimica et biophysica acta. Molecular basis of disease
container_volume 1870
creator Lu, Zhuo
Sun, Gui-Feng
He, Kai-Yi
Zhang, Zhen
Han, Xin-Hao
Qu, Xin-Hui
Wan, Deng-Feng
Yao, Dongyuan
Tou, Fang-Fang
Han, Xiao-Jian
Wang, Tao
description Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma. [Display omitted] •BCATc Inhibitor 2 induces apoptosis of glioblastoma cells.•The inhibitor promotes ubiquitin degradation of Mfn2 and oxidative stress.•Mfn2 degradation and oxidative stress facilitate mitochondrial fission.•Mitochondrial fission triggers apoptosis through PI3K/AKT/mTOR signaling.
doi_str_mv 10.1016/j.bbadis.2024.167220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053137762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925443924002096</els_id><sourcerecordid>3053137762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-eeccd721ed72facbab522d8c1ebf264d36656210c405693555fff5dcb68a27f93</originalsourceid><addsrcrecordid>eNp9kctq3DAUhkVpaSZp36AULbvxVJJt2d4USkgvkNJNCt0JXY5mzmBLE0kekqfpq9aDky6rhQTi_8_H4SPkHWdbzrj8eNgaox3mrWCi2XLZCcFekA3vu6ESkv1-STZsEG3VNPVwQS5zPrDlyI69Jhd13_G-b7oN-XOn0w4KOIphjwYLxkCjpybpYPfgKrvXGKieMESqLTo6QdEmjpgn6hKeIFN9jMcSM-ZzcTdiNKPOJU6amkfql9KIRRcMOzobvJ8XRqAOdkk7_Yz74YOgOjgaH_D8ewKaS4Kc35BXXo8Z3j69V-TXl5u762_V7c-v368_31a25rxUANa6TnBYroVotGmFcL3lYLyQjaulbKXgzDaslUPdtq33vnXWyF6Lzg_1Ffmwzj2meD9DLmrCbGEcdYA4Z1WztuZ110mxRJs1alPMOYFXx4STTo-KM3VWow5qVaPOatSqZqm9fyLMZgL3r_TsYgl8WgOw7HlCSCpbhGDBYQJblIv4f8Jfnmel5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053137762</pqid></control><display><type>article</type><title>Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lu, Zhuo ; Sun, Gui-Feng ; He, Kai-Yi ; Zhang, Zhen ; Han, Xin-Hao ; Qu, Xin-Hui ; Wan, Deng-Feng ; Yao, Dongyuan ; Tou, Fang-Fang ; Han, Xiao-Jian ; Wang, Tao</creator><creatorcontrib>Lu, Zhuo ; Sun, Gui-Feng ; He, Kai-Yi ; Zhang, Zhen ; Han, Xin-Hao ; Qu, Xin-Hui ; Wan, Deng-Feng ; Yao, Dongyuan ; Tou, Fang-Fang ; Han, Xiao-Jian ; Wang, Tao</creatorcontrib><description>Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma. [Display omitted] •BCATc Inhibitor 2 induces apoptosis of glioblastoma cells.•The inhibitor promotes ubiquitin degradation of Mfn2 and oxidative stress.•Mfn2 degradation and oxidative stress facilitate mitochondrial fission.•Mitochondrial fission triggers apoptosis through PI3K/AKT/mTOR signaling.</description><identifier>ISSN: 0925-4439</identifier><identifier>ISSN: 1879-260X</identifier><identifier>EISSN: 1879-260X</identifier><identifier>DOI: 10.1016/j.bbadis.2024.167220</identifier><identifier>PMID: 38718847</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Apoptosis ; BCATc Inhibitor 2 ; Glioblastoma ; Mfn2 ; Oxidative stress ; PI3K/AKT/mTOR signaling</subject><ispartof>Biochimica et biophysica acta. Molecular basis of disease, 2024-06, Vol.1870 (5), p.167220, Article 167220</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-eeccd721ed72facbab522d8c1ebf264d36656210c405693555fff5dcb68a27f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbadis.2024.167220$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38718847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zhuo</creatorcontrib><creatorcontrib>Sun, Gui-Feng</creatorcontrib><creatorcontrib>He, Kai-Yi</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Han, Xin-Hao</creatorcontrib><creatorcontrib>Qu, Xin-Hui</creatorcontrib><creatorcontrib>Wan, Deng-Feng</creatorcontrib><creatorcontrib>Yao, Dongyuan</creatorcontrib><creatorcontrib>Tou, Fang-Fang</creatorcontrib><creatorcontrib>Han, Xiao-Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress</title><title>Biochimica et biophysica acta. Molecular basis of disease</title><addtitle>Biochim Biophys Acta Mol Basis Dis</addtitle><description>Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma. [Display omitted] •BCATc Inhibitor 2 induces apoptosis of glioblastoma cells.•The inhibitor promotes ubiquitin degradation of Mfn2 and oxidative stress.•Mfn2 degradation and oxidative stress facilitate mitochondrial fission.•Mitochondrial fission triggers apoptosis through PI3K/AKT/mTOR signaling.</description><subject>Apoptosis</subject><subject>BCATc Inhibitor 2</subject><subject>Glioblastoma</subject><subject>Mfn2</subject><subject>Oxidative stress</subject><subject>PI3K/AKT/mTOR signaling</subject><issn>0925-4439</issn><issn>1879-260X</issn><issn>1879-260X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3DAUhkVpaSZp36AULbvxVJJt2d4USkgvkNJNCt0JXY5mzmBLE0kekqfpq9aDky6rhQTi_8_H4SPkHWdbzrj8eNgaox3mrWCi2XLZCcFekA3vu6ESkv1-STZsEG3VNPVwQS5zPrDlyI69Jhd13_G-b7oN-XOn0w4KOIphjwYLxkCjpybpYPfgKrvXGKieMESqLTo6QdEmjpgn6hKeIFN9jMcSM-ZzcTdiNKPOJU6amkfql9KIRRcMOzobvJ8XRqAOdkk7_Yz74YOgOjgaH_D8ewKaS4Kc35BXXo8Z3j69V-TXl5u762_V7c-v368_31a25rxUANa6TnBYroVotGmFcL3lYLyQjaulbKXgzDaslUPdtq33vnXWyF6Lzg_1Ffmwzj2meD9DLmrCbGEcdYA4Z1WztuZ110mxRJs1alPMOYFXx4STTo-KM3VWow5qVaPOatSqZqm9fyLMZgL3r_TsYgl8WgOw7HlCSCpbhGDBYQJblIv4f8Jfnmel5Q</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lu, Zhuo</creator><creator>Sun, Gui-Feng</creator><creator>He, Kai-Yi</creator><creator>Zhang, Zhen</creator><creator>Han, Xin-Hao</creator><creator>Qu, Xin-Hui</creator><creator>Wan, Deng-Feng</creator><creator>Yao, Dongyuan</creator><creator>Tou, Fang-Fang</creator><creator>Han, Xiao-Jian</creator><creator>Wang, Tao</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress</title><author>Lu, Zhuo ; Sun, Gui-Feng ; He, Kai-Yi ; Zhang, Zhen ; Han, Xin-Hao ; Qu, Xin-Hui ; Wan, Deng-Feng ; Yao, Dongyuan ; Tou, Fang-Fang ; Han, Xiao-Jian ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-eeccd721ed72facbab522d8c1ebf264d36656210c405693555fff5dcb68a27f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apoptosis</topic><topic>BCATc Inhibitor 2</topic><topic>Glioblastoma</topic><topic>Mfn2</topic><topic>Oxidative stress</topic><topic>PI3K/AKT/mTOR signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhuo</creatorcontrib><creatorcontrib>Sun, Gui-Feng</creatorcontrib><creatorcontrib>He, Kai-Yi</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Han, Xin-Hao</creatorcontrib><creatorcontrib>Qu, Xin-Hui</creatorcontrib><creatorcontrib>Wan, Deng-Feng</creatorcontrib><creatorcontrib>Yao, Dongyuan</creatorcontrib><creatorcontrib>Tou, Fang-Fang</creatorcontrib><creatorcontrib>Han, Xiao-Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Molecular basis of disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhuo</au><au>Sun, Gui-Feng</au><au>He, Kai-Yi</au><au>Zhang, Zhen</au><au>Han, Xin-Hao</au><au>Qu, Xin-Hui</au><au>Wan, Deng-Feng</au><au>Yao, Dongyuan</au><au>Tou, Fang-Fang</au><au>Han, Xiao-Jian</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress</atitle><jtitle>Biochimica et biophysica acta. Molecular basis of disease</jtitle><addtitle>Biochim Biophys Acta Mol Basis Dis</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>1870</volume><issue>5</issue><spage>167220</spage><pages>167220-</pages><artnum>167220</artnum><issn>0925-4439</issn><issn>1879-260X</issn><eissn>1879-260X</eissn><abstract>Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma. [Display omitted] •BCATc Inhibitor 2 induces apoptosis of glioblastoma cells.•The inhibitor promotes ubiquitin degradation of Mfn2 and oxidative stress.•Mfn2 degradation and oxidative stress facilitate mitochondrial fission.•Mitochondrial fission triggers apoptosis through PI3K/AKT/mTOR signaling.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38718847</pmid><doi>10.1016/j.bbadis.2024.167220</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4439
ispartof Biochimica et biophysica acta. Molecular basis of disease, 2024-06, Vol.1870 (5), p.167220, Article 167220
issn 0925-4439
1879-260X
1879-260X
language eng
recordid cdi_proquest_miscellaneous_3053137762
source ScienceDirect Journals (5 years ago - present)
subjects Apoptosis
BCATc Inhibitor 2
Glioblastoma
Mfn2
Oxidative stress
PI3K/AKT/mTOR signaling
title Targeted inhibition of branched-chain amino acid metabolism drives apoptosis of glioblastoma by facilitating ubiquitin degradation of Mfn2 and oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20inhibition%20of%20branched-chain%20amino%20acid%20metabolism%20drives%20apoptosis%20of%20glioblastoma%20by%20facilitating%20ubiquitin%20degradation%20of%20Mfn2%20and%20oxidative%20stress&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Molecular%20basis%20of%20disease&rft.au=Lu,%20Zhuo&rft.date=2024-06-01&rft.volume=1870&rft.issue=5&rft.spage=167220&rft.pages=167220-&rft.artnum=167220&rft.issn=0925-4439&rft.eissn=1879-260X&rft_id=info:doi/10.1016/j.bbadis.2024.167220&rft_dat=%3Cproquest_cross%3E3053137762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053137762&rft_id=info:pmid/38718847&rft_els_id=S0925443924002096&rfr_iscdi=true