Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea

The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C–N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (20), p.26015-26024
Hauptverfasser: Ma, Lingjia, Yuan, Jiongliang, Liu, Zhaotao, Luo, Yiqing, Su, Yuning, Zhu, Kunye, Feng, Zefeng, Niu, Huihua, Xiao, Shuaishuai, Wei, Jianjun, Xiang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26024
container_issue 20
container_start_page 26015
container_title ACS applied materials & interfaces
container_volume 16
creator Ma, Lingjia
Yuan, Jiongliang
Liu, Zhaotao
Luo, Yiqing
Su, Yuning
Zhu, Kunye
Feng, Zefeng
Niu, Huihua
Xiao, Shuaishuai
Wei, Jianjun
Xiang, Xu
description The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C–N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of −0.2 V, the urea yield rate reaches 5.81 mmol g–1 h–1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N  N* intermediates. Then, the electrons in the σ orbitals of *N  N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g 6eg 0). Subsequently, *CO couples with *N  N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.
doi_str_mv 10.1021/acsami.4c00257
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053137387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053137387</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-16e0b84484c6af480ebf1f09252eedeb3e72131df9b8c9e4498de91fa3dcd6d23</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5ewjQkrxXxLniKrSIhV6oWfLsdciJY2L7Qhx4x14Q56EQAunWWlmVzsfQpeUTChh9EabqLfNRBhCWF4eoRGthMgky9nx_yzEKTqLcUNIwRnJR-jlAaLf-eD7iGctmBS80Um37zFF_NakZ7z7-vjs8AISBL_pO5Ma30XsfMAz5xrTQJf-NgPY_tfH3uHpimHdWfzIcPJ4HUCfoxOn2wgXBx2j9d3sabrIlqv5_fR2mWnGeMpoAaSWQkhhCu2EJFA76kg1FAGwUHMoGeXUuqqWpgIhKmmhok5za2xhGR-jq_3dXfCvPcSktk000La6g6Gn4iTnlJdclkP0eh8d4KmN70M3PKYoUT9E1Z6oOhDl3xHvbRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053137387</pqid></control><display><type>article</type><title>Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea</title><source>ACS Publications</source><creator>Ma, Lingjia ; Yuan, Jiongliang ; Liu, Zhaotao ; Luo, Yiqing ; Su, Yuning ; Zhu, Kunye ; Feng, Zefeng ; Niu, Huihua ; Xiao, Shuaishuai ; Wei, Jianjun ; Xiang, Xu</creator><creatorcontrib>Ma, Lingjia ; Yuan, Jiongliang ; Liu, Zhaotao ; Luo, Yiqing ; Su, Yuning ; Zhu, Kunye ; Feng, Zefeng ; Niu, Huihua ; Xiao, Shuaishuai ; Wei, Jianjun ; Xiang, Xu</creatorcontrib><description>The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C–N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of −0.2 V, the urea yield rate reaches 5.81 mmol g–1 h–1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N  N* intermediates. Then, the electrons in the σ orbitals of *N  N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g 6eg 0). Subsequently, *CO couples with *N  N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c00257</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-05, Vol.16 (20), p.26015-26024</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-1375-5536 ; 0000-0002-0947-4582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c00257$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c00257$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Ma, Lingjia</creatorcontrib><creatorcontrib>Yuan, Jiongliang</creatorcontrib><creatorcontrib>Liu, Zhaotao</creatorcontrib><creatorcontrib>Luo, Yiqing</creatorcontrib><creatorcontrib>Su, Yuning</creatorcontrib><creatorcontrib>Zhu, Kunye</creatorcontrib><creatorcontrib>Feng, Zefeng</creatorcontrib><creatorcontrib>Niu, Huihua</creatorcontrib><creatorcontrib>Xiao, Shuaishuai</creatorcontrib><creatorcontrib>Wei, Jianjun</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><title>Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C–N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of −0.2 V, the urea yield rate reaches 5.81 mmol g–1 h–1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N  N* intermediates. Then, the electrons in the σ orbitals of *N  N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g 6eg 0). Subsequently, *CO couples with *N  N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5ewjQkrxXxLniKrSIhV6oWfLsdciJY2L7Qhx4x14Q56EQAunWWlmVzsfQpeUTChh9EabqLfNRBhCWF4eoRGthMgky9nx_yzEKTqLcUNIwRnJR-jlAaLf-eD7iGctmBS80Um37zFF_NakZ7z7-vjs8AISBL_pO5Ma30XsfMAz5xrTQJf-NgPY_tfH3uHpimHdWfzIcPJ4HUCfoxOn2wgXBx2j9d3sabrIlqv5_fR2mWnGeMpoAaSWQkhhCu2EJFA76kg1FAGwUHMoGeXUuqqWpgIhKmmhok5za2xhGR-jq_3dXfCvPcSktk000La6g6Gn4iTnlJdclkP0eh8d4KmN70M3PKYoUT9E1Z6oOhDl3xHvbRA</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Ma, Lingjia</creator><creator>Yuan, Jiongliang</creator><creator>Liu, Zhaotao</creator><creator>Luo, Yiqing</creator><creator>Su, Yuning</creator><creator>Zhu, Kunye</creator><creator>Feng, Zefeng</creator><creator>Niu, Huihua</creator><creator>Xiao, Shuaishuai</creator><creator>Wei, Jianjun</creator><creator>Xiang, Xu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-1375-5536</orcidid><orcidid>https://orcid.org/0000-0002-0947-4582</orcidid></search><sort><creationdate>20240522</creationdate><title>Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea</title><author>Ma, Lingjia ; Yuan, Jiongliang ; Liu, Zhaotao ; Luo, Yiqing ; Su, Yuning ; Zhu, Kunye ; Feng, Zefeng ; Niu, Huihua ; Xiao, Shuaishuai ; Wei, Jianjun ; Xiang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-16e0b84484c6af480ebf1f09252eedeb3e72131df9b8c9e4498de91fa3dcd6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Lingjia</creatorcontrib><creatorcontrib>Yuan, Jiongliang</creatorcontrib><creatorcontrib>Liu, Zhaotao</creatorcontrib><creatorcontrib>Luo, Yiqing</creatorcontrib><creatorcontrib>Su, Yuning</creatorcontrib><creatorcontrib>Zhu, Kunye</creatorcontrib><creatorcontrib>Feng, Zefeng</creatorcontrib><creatorcontrib>Niu, Huihua</creatorcontrib><creatorcontrib>Xiao, Shuaishuai</creatorcontrib><creatorcontrib>Wei, Jianjun</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Lingjia</au><au>Yuan, Jiongliang</au><au>Liu, Zhaotao</au><au>Luo, Yiqing</au><au>Su, Yuning</au><au>Zhu, Kunye</au><au>Feng, Zefeng</au><au>Niu, Huihua</au><au>Xiao, Shuaishuai</au><au>Wei, Jianjun</au><au>Xiang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-22</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>26015</spage><epage>26024</epage><pages>26015-26024</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C–N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of −0.2 V, the urea yield rate reaches 5.81 mmol g–1 h–1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N  N* intermediates. Then, the electrons in the σ orbitals of *N  N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g 6eg 0). Subsequently, *CO couples with *N  N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c00257</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-1375-5536</orcidid><orcidid>https://orcid.org/0000-0002-0947-4582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-05, Vol.16 (20), p.26015-26024
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3053137387
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Mesoporous Electrocatalysts with p–n Heterojunctions for Efficient Electroreduction of CO2 and N2 to Urea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20Electrocatalysts%20with%20p%E2%80%93n%20Heterojunctions%20for%20Efficient%20Electroreduction%20of%20CO2%20and%20N2%20to%20Urea&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ma,%20Lingjia&rft.date=2024-05-22&rft.volume=16&rft.issue=20&rft.spage=26015&rft.epage=26024&rft.pages=26015-26024&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c00257&rft_dat=%3Cproquest_acs_j%3E3053137387%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053137387&rft_id=info:pmid/&rfr_iscdi=true