Directly imaging spin polarons in a kinetically frustrated Hubbard system

The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-05, Vol.629 (8011), p.323-328
Hauptverfasser: Prichard, Max L., Spar, Benjamin M., Morera, Ivan, Demler, Eugene, Yan, Zoe Z., Bakr, Waseem S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 8011
container_start_page 323
container_title Nature (London)
container_volume 629
creator Prichard, Max L.
Spar, Benjamin M.
Morera, Ivan
Demler, Eugene
Yan, Zoe Z.
Bakr, Waseem S.
description The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions 1 – 8 . However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling 9 – 14 . Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect 15 , 16 . We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems 10 , 11 . Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials 17 – 20 . A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.
doi_str_mv 10.1038/s41586-024-07356-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053136323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053136323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNnn2O6IykcrVWKB2XIdp0rJR7GTof8elxSQGJh8sp97z_cQcknhlgKqu8BppkQKjKcgMROpOCJjyqVIuVDymIwBmEpBoRiRsxA2AJBRyU_JCJVkADgdk8VD6Z3tql1S1mZdNuskbMsm2baV8W0Tklib5L1sXFdaU0Ws8H3ovOlcnsz71cr4PAm70Ln6nJwUpgru4nBOyNvT4-tsni5fnhez-2VqUWZdOjWKcZTWKptzax0Kx6fWSMistI7GxQrJcsoKg8YhojUsAyEyqwBdEa8m5GbI3fr2o3eh03UZrKsq07i2DxohQ4oCGUb0-g-6aXvfxN_tKc4oFYJHig2U9W0I3hV666MMv9MU9F60HkTrKFp_idYiNl0dovtV7fKflm-zEcABCPGpWTv_O_uf2E-3GYiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054211664</pqid></control><display><type>article</type><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</creator><creatorcontrib>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</creatorcontrib><description>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions 1 – 8 . However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling 9 – 14 . Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect 15 , 16 . We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems 10 , 11 . Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials 17 – 20 . A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07356-6</identifier><identifier>PMID: 38720039</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Electron tunneling ; Electrons ; Energy ; Heterostructures ; Humanities and Social Sciences ; Kinetics ; Magnetic fields ; Magnetics ; Magnetism ; Magnets - chemistry ; multidisciplinary ; Operators ; Plateaus ; Propagation ; Quantum Theory ; Science ; Science (multidisciplinary) ; Single electrons ; Superconductivity ; Temperature</subject><ispartof>Nature (London), 2024-05, Vol.629 (8011), p.323-328</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</citedby><cites>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</cites><orcidid>0000-0003-4646-9720 ; 0000-0003-3784-6440 ; 0000-0003-1504-0999 ; 0000-0003-1901-8262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07356-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07356-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38720039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prichard, Max L.</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Morera, Ivan</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions 1 – 8 . However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling 9 – 14 . Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect 15 , 16 . We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems 10 , 11 . Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials 17 – 20 . A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Electron tunneling</subject><subject>Electrons</subject><subject>Energy</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Magnetic fields</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Magnets - chemistry</subject><subject>multidisciplinary</subject><subject>Operators</subject><subject>Plateaus</subject><subject>Propagation</subject><subject>Quantum Theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single electrons</subject><subject>Superconductivity</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNnn2O6IykcrVWKB2XIdp0rJR7GTof8elxSQGJh8sp97z_cQcknhlgKqu8BppkQKjKcgMROpOCJjyqVIuVDymIwBmEpBoRiRsxA2AJBRyU_JCJVkADgdk8VD6Z3tql1S1mZdNuskbMsm2baV8W0Tklib5L1sXFdaU0Ws8H3ovOlcnsz71cr4PAm70Ln6nJwUpgru4nBOyNvT4-tsni5fnhez-2VqUWZdOjWKcZTWKptzax0Kx6fWSMistI7GxQrJcsoKg8YhojUsAyEyqwBdEa8m5GbI3fr2o3eh03UZrKsq07i2DxohQ4oCGUb0-g-6aXvfxN_tKc4oFYJHig2U9W0I3hV666MMv9MU9F60HkTrKFp_idYiNl0dovtV7fKflm-zEcABCPGpWTv_O_uf2E-3GYiY</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Prichard, Max L.</creator><creator>Spar, Benjamin M.</creator><creator>Morera, Ivan</creator><creator>Demler, Eugene</creator><creator>Yan, Zoe Z.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4646-9720</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid></search><sort><creationdate>20240509</creationdate><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><author>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Electron tunneling</topic><topic>Electrons</topic><topic>Energy</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Magnetic fields</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Magnets - chemistry</topic><topic>multidisciplinary</topic><topic>Operators</topic><topic>Plateaus</topic><topic>Propagation</topic><topic>Quantum Theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single electrons</topic><topic>Superconductivity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prichard, Max L.</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Morera, Ivan</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prichard, Max L.</au><au>Spar, Benjamin M.</au><au>Morera, Ivan</au><au>Demler, Eugene</au><au>Yan, Zoe Z.</au><au>Bakr, Waseem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly imaging spin polarons in a kinetically frustrated Hubbard system</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-09</date><risdate>2024</risdate><volume>629</volume><issue>8011</issue><spage>323</spage><epage>328</epage><pages>323-328</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions 1 – 8 . However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling 9 – 14 . Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect 15 , 16 . We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems 10 , 11 . Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials 17 – 20 . A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38720039</pmid><doi>10.1038/s41586-024-07356-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4646-9720</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-05, Vol.629 (8011), p.323-328
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3053136323
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/36/1125
639/766/483/3926
Electron tunneling
Electrons
Energy
Heterostructures
Humanities and Social Sciences
Kinetics
Magnetic fields
Magnetics
Magnetism
Magnets - chemistry
multidisciplinary
Operators
Plateaus
Propagation
Quantum Theory
Science
Science (multidisciplinary)
Single electrons
Superconductivity
Temperature
title Directly imaging spin polarons in a kinetically frustrated Hubbard system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20imaging%20spin%20polarons%20in%20a%20kinetically%20frustrated%20Hubbard%20system&rft.jtitle=Nature%20(London)&rft.au=Prichard,%20Max%20L.&rft.date=2024-05-09&rft.volume=629&rft.issue=8011&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07356-6&rft_dat=%3Cproquest_cross%3E3053136323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054211664&rft_id=info:pmid/38720039&rfr_iscdi=true