Directly imaging spin polarons in a kinetically frustrated Hubbard system
The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8011), p.323-328 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 8011 |
container_start_page | 323 |
container_title | Nature (London) |
container_volume | 629 |
creator | Prichard, Max L. Spar, Benjamin M. Morera, Ivan Demler, Eugene Yan, Zoe Z. Bakr, Waseem S. |
description | The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions
1
–
8
. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling
9
–
14
. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect
15
,
16
. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems
10
,
11
. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials
17
–
20
.
A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect. |
doi_str_mv | 10.1038/s41586-024-07356-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053136323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053136323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNnn2O6IykcrVWKB2XIdp0rJR7GTof8elxSQGJh8sp97z_cQcknhlgKqu8BppkQKjKcgMROpOCJjyqVIuVDymIwBmEpBoRiRsxA2AJBRyU_JCJVkADgdk8VD6Z3tql1S1mZdNuskbMsm2baV8W0Tklib5L1sXFdaU0Ws8H3ovOlcnsz71cr4PAm70Ln6nJwUpgru4nBOyNvT4-tsni5fnhez-2VqUWZdOjWKcZTWKptzax0Kx6fWSMistI7GxQrJcsoKg8YhojUsAyEyqwBdEa8m5GbI3fr2o3eh03UZrKsq07i2DxohQ4oCGUb0-g-6aXvfxN_tKc4oFYJHig2U9W0I3hV666MMv9MU9F60HkTrKFp_idYiNl0dovtV7fKflm-zEcABCPGpWTv_O_uf2E-3GYiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054211664</pqid></control><display><type>article</type><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</creator><creatorcontrib>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</creatorcontrib><description>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions
1
–
8
. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling
9
–
14
. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect
15
,
16
. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems
10
,
11
. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials
17
–
20
.
A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07356-6</identifier><identifier>PMID: 38720039</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Electron tunneling ; Electrons ; Energy ; Heterostructures ; Humanities and Social Sciences ; Kinetics ; Magnetic fields ; Magnetics ; Magnetism ; Magnets - chemistry ; multidisciplinary ; Operators ; Plateaus ; Propagation ; Quantum Theory ; Science ; Science (multidisciplinary) ; Single electrons ; Superconductivity ; Temperature</subject><ispartof>Nature (London), 2024-05, Vol.629 (8011), p.323-328</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</citedby><cites>FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</cites><orcidid>0000-0003-4646-9720 ; 0000-0003-3784-6440 ; 0000-0003-1504-0999 ; 0000-0003-1901-8262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07356-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07356-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38720039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prichard, Max L.</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Morera, Ivan</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions
1
–
8
. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling
9
–
14
. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect
15
,
16
. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems
10
,
11
. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials
17
–
20
.
A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Electron tunneling</subject><subject>Electrons</subject><subject>Energy</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Magnetic fields</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Magnets - chemistry</subject><subject>multidisciplinary</subject><subject>Operators</subject><subject>Plateaus</subject><subject>Propagation</subject><subject>Quantum Theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single electrons</subject><subject>Superconductivity</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNnn2O6IykcrVWKB2XIdp0rJR7GTof8elxSQGJh8sp97z_cQcknhlgKqu8BppkQKjKcgMROpOCJjyqVIuVDymIwBmEpBoRiRsxA2AJBRyU_JCJVkADgdk8VD6Z3tql1S1mZdNuskbMsm2baV8W0Tklib5L1sXFdaU0Ws8H3ovOlcnsz71cr4PAm70Ln6nJwUpgru4nBOyNvT4-tsni5fnhez-2VqUWZdOjWKcZTWKptzax0Kx6fWSMistI7GxQrJcsoKg8YhojUsAyEyqwBdEa8m5GbI3fr2o3eh03UZrKsq07i2DxohQ4oCGUb0-g-6aXvfxN_tKc4oFYJHig2U9W0I3hV666MMv9MU9F60HkTrKFp_idYiNl0dovtV7fKflm-zEcABCPGpWTv_O_uf2E-3GYiY</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Prichard, Max L.</creator><creator>Spar, Benjamin M.</creator><creator>Morera, Ivan</creator><creator>Demler, Eugene</creator><creator>Yan, Zoe Z.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4646-9720</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid></search><sort><creationdate>20240509</creationdate><title>Directly imaging spin polarons in a kinetically frustrated Hubbard system</title><author>Prichard, Max L. ; Spar, Benjamin M. ; Morera, Ivan ; Demler, Eugene ; Yan, Zoe Z. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9a82437cc8cd4cce36e49ca705c7ce1103f72d12fa3ae333ca250665c803efae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Electron tunneling</topic><topic>Electrons</topic><topic>Energy</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Magnetic fields</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Magnets - chemistry</topic><topic>multidisciplinary</topic><topic>Operators</topic><topic>Plateaus</topic><topic>Propagation</topic><topic>Quantum Theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single electrons</topic><topic>Superconductivity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prichard, Max L.</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Morera, Ivan</creatorcontrib><creatorcontrib>Demler, Eugene</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prichard, Max L.</au><au>Spar, Benjamin M.</au><au>Morera, Ivan</au><au>Demler, Eugene</au><au>Yan, Zoe Z.</au><au>Bakr, Waseem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly imaging spin polarons in a kinetically frustrated Hubbard system</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-09</date><risdate>2024</risdate><volume>629</volume><issue>8011</issue><spage>323</spage><epage>328</epage><pages>323-328</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions
1
–
8
. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling
9
–
14
. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect
15
,
16
. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems
10
,
11
. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials
17
–
20
.
A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38720039</pmid><doi>10.1038/s41586-024-07356-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4646-9720</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8011), p.323-328 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053136323 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/36/1125 639/766/483/3926 Electron tunneling Electrons Energy Heterostructures Humanities and Social Sciences Kinetics Magnetic fields Magnetics Magnetism Magnets - chemistry multidisciplinary Operators Plateaus Propagation Quantum Theory Science Science (multidisciplinary) Single electrons Superconductivity Temperature |
title | Directly imaging spin polarons in a kinetically frustrated Hubbard system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20imaging%20spin%20polarons%20in%20a%20kinetically%20frustrated%20Hubbard%20system&rft.jtitle=Nature%20(London)&rft.au=Prichard,%20Max%20L.&rft.date=2024-05-09&rft.volume=629&rft.issue=8011&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07356-6&rft_dat=%3Cproquest_cross%3E3053136323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054211664&rft_id=info:pmid/38720039&rfr_iscdi=true |