Self-oscillating polymeric refrigerator with high energy efficiency
Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8014), p.1041-1046 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1046 |
---|---|
container_issue | 8014 |
container_start_page | 1041 |
container_title | Nature (London) |
container_volume | 629 |
creator | Han, Donglin Zhang, Yingjing Huang, Cenling Zheng, Shanyu Wu, Dongyuan Li, Qiang Du, Feihong Duan, Hongxiao Chen, Weilin Shi, Junye Chen, Jiangping Liu, Gang Chen, Xin Qian, Xiaoshi |
description | Electrocaloric
1
,
2
and electrostrictive
3
,
4
effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration
5
. Despite a handful of numerical models and schematic presentations
6
,
7
, current electrocaloric refrigerators still rely on external accessories to drive the working bodies
8
–
10
and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g
−1
and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.
We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device. |
doi_str_mv | 10.1038/s41586-024-07375-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053136218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053136218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwM40dsZ4kqXlIlFsDaSlw7dZVHsROh_D2GFpasZjHnXs0chC4J3BBg6jZykiuBgXIMkskcsyM0J1wKzIWSx2gOQBUGxcQMncW4BYCcSH6KZkxJCiDVHC1fbeNwH41vmnLwXZ3t-mZqbfAmC9YFX9tQDn3IPv2wyTa-3mS2s6GeMuucN952ZjpHJ65sor04zAV6f7h_Wz7h1cvj8_JuhQ0t1IBJWQmbO2EcKXLFiDCKQaGolCI3puJOFpaCsoWq1hIcA87XyiW4olwR6tgCXe97d6H_GG0cdOujsenwzvZj1AxyRpigRCWU7lET-hjTI3oXfFuGSRPQ3_L0Xp5O8vSPPM1S6OrQP1atXf9Ffm0lgO2BmFZdMqO3_Ri69PN_tV82OnoZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053136218</pqid></control><display><type>article</type><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><source>MEDLINE</source><source>Nature</source><source>Springer Online Journals - JUSTICE</source><creator>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</creator><creatorcontrib>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</creatorcontrib><description>Electrocaloric
1
,
2
and electrostrictive
3
,
4
effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration
5
. Despite a handful of numerical models and schematic presentations
6
,
7
, current electrocaloric refrigerators still rely on external accessories to drive the working bodies
8
–
10
and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g
−1
and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.
We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07375-3</identifier><identifier>PMID: 38720078</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1005 ; 639/4077/4107 ; 639/766/25 ; Cold Temperature ; Electric Stimulation ; Electricity ; Equipment Design ; Humanities and Social Sciences ; multidisciplinary ; Polymers - chemistry ; Refrigeration - instrumentation ; Science ; Science (multidisciplinary) ; Temperature ; Thermodynamics</subject><ispartof>Nature (London), 2024-05, Vol.629 (8014), p.1041-1046</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</cites><orcidid>0000-0002-7852-1303 ; 0000-0003-1897-3727 ; 0000-0001-8213-4704 ; 0000-0003-3487-7567 ; 0000-0002-3142-9323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07375-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07375-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38720078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Zhang, Yingjing</creatorcontrib><creatorcontrib>Huang, Cenling</creatorcontrib><creatorcontrib>Zheng, Shanyu</creatorcontrib><creatorcontrib>Wu, Dongyuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Du, Feihong</creatorcontrib><creatorcontrib>Duan, Hongxiao</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Shi, Junye</creatorcontrib><creatorcontrib>Chen, Jiangping</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoshi</creatorcontrib><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Electrocaloric
1
,
2
and electrostrictive
3
,
4
effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration
5
. Despite a handful of numerical models and schematic presentations
6
,
7
, current electrocaloric refrigerators still rely on external accessories to drive the working bodies
8
–
10
and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g
−1
and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.
We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</description><subject>639/166/988</subject><subject>639/301/1005</subject><subject>639/4077/4107</subject><subject>639/766/25</subject><subject>Cold Temperature</subject><subject>Electric Stimulation</subject><subject>Electricity</subject><subject>Equipment Design</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Polymers - chemistry</subject><subject>Refrigeration - instrumentation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwM40dsZ4kqXlIlFsDaSlw7dZVHsROh_D2GFpasZjHnXs0chC4J3BBg6jZykiuBgXIMkskcsyM0J1wKzIWSx2gOQBUGxcQMncW4BYCcSH6KZkxJCiDVHC1fbeNwH41vmnLwXZ3t-mZqbfAmC9YFX9tQDn3IPv2wyTa-3mS2s6GeMuucN952ZjpHJ65sor04zAV6f7h_Wz7h1cvj8_JuhQ0t1IBJWQmbO2EcKXLFiDCKQaGolCI3puJOFpaCsoWq1hIcA87XyiW4olwR6tgCXe97d6H_GG0cdOujsenwzvZj1AxyRpigRCWU7lET-hjTI3oXfFuGSRPQ3_L0Xp5O8vSPPM1S6OrQP1atXf9Ffm0lgO2BmFZdMqO3_Ri69PN_tV82OnoZ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Han, Donglin</creator><creator>Zhang, Yingjing</creator><creator>Huang, Cenling</creator><creator>Zheng, Shanyu</creator><creator>Wu, Dongyuan</creator><creator>Li, Qiang</creator><creator>Du, Feihong</creator><creator>Duan, Hongxiao</creator><creator>Chen, Weilin</creator><creator>Shi, Junye</creator><creator>Chen, Jiangping</creator><creator>Liu, Gang</creator><creator>Chen, Xin</creator><creator>Qian, Xiaoshi</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7852-1303</orcidid><orcidid>https://orcid.org/0000-0003-1897-3727</orcidid><orcidid>https://orcid.org/0000-0001-8213-4704</orcidid><orcidid>https://orcid.org/0000-0003-3487-7567</orcidid><orcidid>https://orcid.org/0000-0002-3142-9323</orcidid></search><sort><creationdate>20240530</creationdate><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><author>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/988</topic><topic>639/301/1005</topic><topic>639/4077/4107</topic><topic>639/766/25</topic><topic>Cold Temperature</topic><topic>Electric Stimulation</topic><topic>Electricity</topic><topic>Equipment Design</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Polymers - chemistry</topic><topic>Refrigeration - instrumentation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Zhang, Yingjing</creatorcontrib><creatorcontrib>Huang, Cenling</creatorcontrib><creatorcontrib>Zheng, Shanyu</creatorcontrib><creatorcontrib>Wu, Dongyuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Du, Feihong</creatorcontrib><creatorcontrib>Duan, Hongxiao</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Shi, Junye</creatorcontrib><creatorcontrib>Chen, Jiangping</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Donglin</au><au>Zhang, Yingjing</au><au>Huang, Cenling</au><au>Zheng, Shanyu</au><au>Wu, Dongyuan</au><au>Li, Qiang</au><au>Du, Feihong</au><au>Duan, Hongxiao</au><au>Chen, Weilin</au><au>Shi, Junye</au><au>Chen, Jiangping</au><au>Liu, Gang</au><au>Chen, Xin</au><au>Qian, Xiaoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-oscillating polymeric refrigerator with high energy efficiency</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>629</volume><issue>8014</issue><spage>1041</spage><epage>1046</epage><pages>1041-1046</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Electrocaloric
1
,
2
and electrostrictive
3
,
4
effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration
5
. Despite a handful of numerical models and schematic presentations
6
,
7
, current electrocaloric refrigerators still rely on external accessories to drive the working bodies
8
–
10
and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g
−1
and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.
We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38720078</pmid><doi>10.1038/s41586-024-07375-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7852-1303</orcidid><orcidid>https://orcid.org/0000-0003-1897-3727</orcidid><orcidid>https://orcid.org/0000-0001-8213-4704</orcidid><orcidid>https://orcid.org/0000-0003-3487-7567</orcidid><orcidid>https://orcid.org/0000-0002-3142-9323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8014), p.1041-1046 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3053136218 |
source | MEDLINE; Nature; Springer Online Journals - JUSTICE |
subjects | 639/166/988 639/301/1005 639/4077/4107 639/766/25 Cold Temperature Electric Stimulation Electricity Equipment Design Humanities and Social Sciences multidisciplinary Polymers - chemistry Refrigeration - instrumentation Science Science (multidisciplinary) Temperature Thermodynamics |
title | Self-oscillating polymeric refrigerator with high energy efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-oscillating%20polymeric%20refrigerator%20with%20high%20energy%20efficiency&rft.jtitle=Nature%20(London)&rft.au=Han,%20Donglin&rft.date=2024-05-30&rft.volume=629&rft.issue=8014&rft.spage=1041&rft.epage=1046&rft.pages=1041-1046&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07375-3&rft_dat=%3Cproquest_cross%3E3053136218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053136218&rft_id=info:pmid/38720078&rfr_iscdi=true |