Self-oscillating polymeric refrigerator with high energy efficiency

Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-05, Vol.629 (8014), p.1041-1046
Hauptverfasser: Han, Donglin, Zhang, Yingjing, Huang, Cenling, Zheng, Shanyu, Wu, Dongyuan, Li, Qiang, Du, Feihong, Duan, Hongxiao, Chen, Weilin, Shi, Junye, Chen, Jiangping, Liu, Gang, Chen, Xin, Qian, Xiaoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 8014
container_start_page 1041
container_title Nature (London)
container_volume 629
creator Han, Donglin
Zhang, Yingjing
Huang, Cenling
Zheng, Shanyu
Wu, Dongyuan
Li, Qiang
Du, Feihong
Duan, Hongxiao
Chen, Weilin
Shi, Junye
Chen, Jiangping
Liu, Gang
Chen, Xin
Qian, Xiaoshi
description Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic presentations 6 , 7 , current electrocaloric refrigerators still rely on external accessories to drive the working bodies 8 – 10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g −1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management. We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.
doi_str_mv 10.1038/s41586-024-07375-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3053136218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053136218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwM40dsZ4kqXlIlFsDaSlw7dZVHsROh_D2GFpasZjHnXs0chC4J3BBg6jZykiuBgXIMkskcsyM0J1wKzIWSx2gOQBUGxcQMncW4BYCcSH6KZkxJCiDVHC1fbeNwH41vmnLwXZ3t-mZqbfAmC9YFX9tQDn3IPv2wyTa-3mS2s6GeMuucN952ZjpHJ65sor04zAV6f7h_Wz7h1cvj8_JuhQ0t1IBJWQmbO2EcKXLFiDCKQaGolCI3puJOFpaCsoWq1hIcA87XyiW4olwR6tgCXe97d6H_GG0cdOujsenwzvZj1AxyRpigRCWU7lET-hjTI3oXfFuGSRPQ3_L0Xp5O8vSPPM1S6OrQP1atXf9Ffm0lgO2BmFZdMqO3_Ri69PN_tV82OnoZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053136218</pqid></control><display><type>article</type><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><source>MEDLINE</source><source>Nature</source><source>Springer Online Journals - JUSTICE</source><creator>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</creator><creatorcontrib>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</creatorcontrib><description>Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic presentations 6 , 7 , current electrocaloric refrigerators still rely on external accessories to drive the working bodies 8 – 10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g −1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management. We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07375-3</identifier><identifier>PMID: 38720078</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1005 ; 639/4077/4107 ; 639/766/25 ; Cold Temperature ; Electric Stimulation ; Electricity ; Equipment Design ; Humanities and Social Sciences ; multidisciplinary ; Polymers - chemistry ; Refrigeration - instrumentation ; Science ; Science (multidisciplinary) ; Temperature ; Thermodynamics</subject><ispartof>Nature (London), 2024-05, Vol.629 (8014), p.1041-1046</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</cites><orcidid>0000-0002-7852-1303 ; 0000-0003-1897-3727 ; 0000-0001-8213-4704 ; 0000-0003-3487-7567 ; 0000-0002-3142-9323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07375-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07375-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38720078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Zhang, Yingjing</creatorcontrib><creatorcontrib>Huang, Cenling</creatorcontrib><creatorcontrib>Zheng, Shanyu</creatorcontrib><creatorcontrib>Wu, Dongyuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Du, Feihong</creatorcontrib><creatorcontrib>Duan, Hongxiao</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Shi, Junye</creatorcontrib><creatorcontrib>Chen, Jiangping</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoshi</creatorcontrib><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic presentations 6 , 7 , current electrocaloric refrigerators still rely on external accessories to drive the working bodies 8 – 10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g −1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management. We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</description><subject>639/166/988</subject><subject>639/301/1005</subject><subject>639/4077/4107</subject><subject>639/766/25</subject><subject>Cold Temperature</subject><subject>Electric Stimulation</subject><subject>Electricity</subject><subject>Equipment Design</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Polymers - chemistry</subject><subject>Refrigeration - instrumentation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmwM40dsZ4kqXlIlFsDaSlw7dZVHsROh_D2GFpasZjHnXs0chC4J3BBg6jZykiuBgXIMkskcsyM0J1wKzIWSx2gOQBUGxcQMncW4BYCcSH6KZkxJCiDVHC1fbeNwH41vmnLwXZ3t-mZqbfAmC9YFX9tQDn3IPv2wyTa-3mS2s6GeMuucN952ZjpHJ65sor04zAV6f7h_Wz7h1cvj8_JuhQ0t1IBJWQmbO2EcKXLFiDCKQaGolCI3puJOFpaCsoWq1hIcA87XyiW4olwR6tgCXe97d6H_GG0cdOujsenwzvZj1AxyRpigRCWU7lET-hjTI3oXfFuGSRPQ3_L0Xp5O8vSPPM1S6OrQP1atXf9Ffm0lgO2BmFZdMqO3_Ri69PN_tV82OnoZ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Han, Donglin</creator><creator>Zhang, Yingjing</creator><creator>Huang, Cenling</creator><creator>Zheng, Shanyu</creator><creator>Wu, Dongyuan</creator><creator>Li, Qiang</creator><creator>Du, Feihong</creator><creator>Duan, Hongxiao</creator><creator>Chen, Weilin</creator><creator>Shi, Junye</creator><creator>Chen, Jiangping</creator><creator>Liu, Gang</creator><creator>Chen, Xin</creator><creator>Qian, Xiaoshi</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7852-1303</orcidid><orcidid>https://orcid.org/0000-0003-1897-3727</orcidid><orcidid>https://orcid.org/0000-0001-8213-4704</orcidid><orcidid>https://orcid.org/0000-0003-3487-7567</orcidid><orcidid>https://orcid.org/0000-0002-3142-9323</orcidid></search><sort><creationdate>20240530</creationdate><title>Self-oscillating polymeric refrigerator with high energy efficiency</title><author>Han, Donglin ; Zhang, Yingjing ; Huang, Cenling ; Zheng, Shanyu ; Wu, Dongyuan ; Li, Qiang ; Du, Feihong ; Duan, Hongxiao ; Chen, Weilin ; Shi, Junye ; Chen, Jiangping ; Liu, Gang ; Chen, Xin ; Qian, Xiaoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1ab6e5f6cf1958316c8309827765ccb4f79e208e98bd70f3044d8ff19b24812f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/988</topic><topic>639/301/1005</topic><topic>639/4077/4107</topic><topic>639/766/25</topic><topic>Cold Temperature</topic><topic>Electric Stimulation</topic><topic>Electricity</topic><topic>Equipment Design</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Polymers - chemistry</topic><topic>Refrigeration - instrumentation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Zhang, Yingjing</creatorcontrib><creatorcontrib>Huang, Cenling</creatorcontrib><creatorcontrib>Zheng, Shanyu</creatorcontrib><creatorcontrib>Wu, Dongyuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Du, Feihong</creatorcontrib><creatorcontrib>Duan, Hongxiao</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Shi, Junye</creatorcontrib><creatorcontrib>Chen, Jiangping</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Donglin</au><au>Zhang, Yingjing</au><au>Huang, Cenling</au><au>Zheng, Shanyu</au><au>Wu, Dongyuan</au><au>Li, Qiang</au><au>Du, Feihong</au><au>Duan, Hongxiao</au><au>Chen, Weilin</au><au>Shi, Junye</au><au>Chen, Jiangping</au><au>Liu, Gang</au><au>Chen, Xin</au><au>Qian, Xiaoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-oscillating polymeric refrigerator with high energy efficiency</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>629</volume><issue>8014</issue><spage>1041</spage><epage>1046</epage><pages>1041-1046</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Electrocaloric 1 , 2 and electrostrictive 3 , 4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration 5 . Despite a handful of numerical models and schematic presentations 6 , 7 , current electrocaloric refrigerators still rely on external accessories to drive the working bodies 8 – 10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g −1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management. We report on a near-zero-power flexible heat pump that uses both electrocaloric and electrostrictive properties of a tailored polymer to create a chip-scale refrigerator device.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38720078</pmid><doi>10.1038/s41586-024-07375-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7852-1303</orcidid><orcidid>https://orcid.org/0000-0003-1897-3727</orcidid><orcidid>https://orcid.org/0000-0001-8213-4704</orcidid><orcidid>https://orcid.org/0000-0003-3487-7567</orcidid><orcidid>https://orcid.org/0000-0002-3142-9323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-05, Vol.629 (8014), p.1041-1046
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3053136218
source MEDLINE; Nature; Springer Online Journals - JUSTICE
subjects 639/166/988
639/301/1005
639/4077/4107
639/766/25
Cold Temperature
Electric Stimulation
Electricity
Equipment Design
Humanities and Social Sciences
multidisciplinary
Polymers - chemistry
Refrigeration - instrumentation
Science
Science (multidisciplinary)
Temperature
Thermodynamics
title Self-oscillating polymeric refrigerator with high energy efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-oscillating%20polymeric%20refrigerator%20with%20high%20energy%20efficiency&rft.jtitle=Nature%20(London)&rft.au=Han,%20Donglin&rft.date=2024-05-30&rft.volume=629&rft.issue=8014&rft.spage=1041&rft.epage=1046&rft.pages=1041-1046&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07375-3&rft_dat=%3Cproquest_cross%3E3053136218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053136218&rft_id=info:pmid/38720078&rfr_iscdi=true