A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood f...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2024-07, Vol.40 (7), p.e3833-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e3833 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 40 |
creator | Fučík, Radek Kovář, Jan Škardová, Kateřina Polívka, Ondřej Chabiniok, Radomír |
description | A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.
A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed. |
doi_str_mv | 10.1002/cnm.3833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3052595970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077693517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbKkFf4EEvHhJ3WQ22eyxFr-g1Yuel8nuxqYk2ZpNkPrr3dpaQXAOM8Pw8DC8hJxHdBJRGl-rpp5ABnBEhjFlNOSC8ePDDmJAxs6tqK9YCMHhlAwg41ECCR-SxTSosOtKZYIbW3WfNTZNgOt1a1Etg84GNXZL41upsApqq01VNm-BLYJ6YxW2uvTntWmL3pW2OSMnBVbOjPdzRF7vbl9mD-H8-f5xNp2HCpiAUOVJKjTNERRDzWJkyjBFkRZYZJAXGmnKhBIsyvKMAaN5QmOMaQ6agU41jMjVzuv_fO-N62RdOmWqChtjeyeBJnEiEsGpRy__oCvbt43_zlOcpwKSiP8KVWuda00h121ZY7uREZXblKVPWW5T9ujFXtjntdEH8CdTD4Q74KOszOZfkZw9Lb6FXwHchVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077693517</pqid></control><display><type>article</type><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</creator><creatorcontrib>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</creatorcontrib><description>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.
A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3833</identifier><identifier>PMID: 38715357</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>advection–diffusion problem ; Blood flow ; contrast agent transport ; Contrast agents ; Contrast media ; Finite element method ; Flow simulation ; lattice Boltzmann method ; magnetic resonance imaging ; Mass transfer ; Mathematical analysis ; Mathematical models ; mixed‐hybrid finite element method ; myocardial perfusion ; Myocardium ; Perfusion ; Porous materials ; Porous media ; Two dimensional flow</subject><ispartof>International journal for numerical methods in biomedical engineering, 2024-07, Vol.40 (7), p.e3833-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</citedby><cites>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</cites><orcidid>0000-0001-7040-9184 ; 0000-0002-7527-2751 ; 0009-0009-0111-3326 ; 0000-0002-9870-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3833$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3833$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38715357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fučík, Radek</creatorcontrib><creatorcontrib>Kovář, Jan</creatorcontrib><creatorcontrib>Škardová, Kateřina</creatorcontrib><creatorcontrib>Polívka, Ondřej</creatorcontrib><creatorcontrib>Chabiniok, Radomír</creatorcontrib><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.
A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</description><subject>advection–diffusion problem</subject><subject>Blood flow</subject><subject>contrast agent transport</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>lattice Boltzmann method</subject><subject>magnetic resonance imaging</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mixed‐hybrid finite element method</subject><subject>myocardial perfusion</subject><subject>Myocardium</subject><subject>Perfusion</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Two dimensional flow</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbKkFf4EEvHhJ3WQ22eyxFr-g1Yuel8nuxqYk2ZpNkPrr3dpaQXAOM8Pw8DC8hJxHdBJRGl-rpp5ABnBEhjFlNOSC8ePDDmJAxs6tqK9YCMHhlAwg41ECCR-SxTSosOtKZYIbW3WfNTZNgOt1a1Etg84GNXZL41upsApqq01VNm-BLYJ6YxW2uvTntWmL3pW2OSMnBVbOjPdzRF7vbl9mD-H8-f5xNp2HCpiAUOVJKjTNERRDzWJkyjBFkRZYZJAXGmnKhBIsyvKMAaN5QmOMaQ6agU41jMjVzuv_fO-N62RdOmWqChtjeyeBJnEiEsGpRy__oCvbt43_zlOcpwKSiP8KVWuda00h121ZY7uREZXblKVPWW5T9ujFXtjntdEH8CdTD4Q74KOszOZfkZw9Lb6FXwHchVA</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Fučík, Radek</creator><creator>Kovář, Jan</creator><creator>Škardová, Kateřina</creator><creator>Polívka, Ondřej</creator><creator>Chabiniok, Radomír</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7040-9184</orcidid><orcidid>https://orcid.org/0000-0002-7527-2751</orcidid><orcidid>https://orcid.org/0009-0009-0111-3326</orcidid><orcidid>https://orcid.org/0000-0002-9870-3438</orcidid></search><sort><creationdate>202407</creationdate><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><author>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>advection–diffusion problem</topic><topic>Blood flow</topic><topic>contrast agent transport</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>lattice Boltzmann method</topic><topic>magnetic resonance imaging</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mixed‐hybrid finite element method</topic><topic>myocardial perfusion</topic><topic>Myocardium</topic><topic>Perfusion</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fučík, Radek</creatorcontrib><creatorcontrib>Kovář, Jan</creatorcontrib><creatorcontrib>Škardová, Kateřina</creatorcontrib><creatorcontrib>Polívka, Ondřej</creatorcontrib><creatorcontrib>Chabiniok, Radomír</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fučík, Radek</au><au>Kovář, Jan</au><au>Škardová, Kateřina</au><au>Polívka, Ondřej</au><au>Chabiniok, Radomír</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2024-07</date><risdate>2024</risdate><volume>40</volume><issue>7</issue><spage>e3833</spage><epage>n/a</epage><pages>e3833-n/a</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.
A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38715357</pmid><doi>10.1002/cnm.3833</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7040-9184</orcidid><orcidid>https://orcid.org/0000-0002-7527-2751</orcidid><orcidid>https://orcid.org/0009-0009-0111-3326</orcidid><orcidid>https://orcid.org/0000-0002-9870-3438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2024-07, Vol.40 (7), p.e3833-n/a |
issn | 2040-7939 2040-7947 2040-7947 |
language | eng |
recordid | cdi_proquest_miscellaneous_3052595970 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | advection–diffusion problem Blood flow contrast agent transport Contrast agents Contrast media Finite element method Flow simulation lattice Boltzmann method magnetic resonance imaging Mass transfer Mathematical analysis Mathematical models mixed‐hybrid finite element method myocardial perfusion Myocardium Perfusion Porous materials Porous media Two dimensional flow |
title | A lattice Boltzmann approach to mathematical modeling of myocardial perfusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lattice%20Boltzmann%20approach%20to%20mathematical%20modeling%20of%20myocardial%20perfusion&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Fu%C4%8D%C3%ADk,%20Radek&rft.date=2024-07&rft.volume=40&rft.issue=7&rft.spage=e3833&rft.epage=n/a&rft.pages=e3833-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3833&rft_dat=%3Cproquest_cross%3E3077693517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077693517&rft_id=info:pmid/38715357&rfr_iscdi=true |