A lattice Boltzmann approach to mathematical modeling of myocardial perfusion

A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2024-07, Vol.40 (7), p.e3833-n/a
Hauptverfasser: Fučík, Radek, Kovář, Jan, Škardová, Kateřina, Polívka, Ondřej, Chabiniok, Radomír
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e3833
container_title International journal for numerical methods in biomedical engineering
container_volume 40
creator Fučík, Radek
Kovář, Jan
Škardová, Kateřina
Polívka, Ondřej
Chabiniok, Radomír
description A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.
doi_str_mv 10.1002/cnm.3833
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3052595970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077693517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbKkFf4EEvHhJ3WQ22eyxFr-g1Yuel8nuxqYk2ZpNkPrr3dpaQXAOM8Pw8DC8hJxHdBJRGl-rpp5ABnBEhjFlNOSC8ePDDmJAxs6tqK9YCMHhlAwg41ECCR-SxTSosOtKZYIbW3WfNTZNgOt1a1Etg84GNXZL41upsApqq01VNm-BLYJ6YxW2uvTntWmL3pW2OSMnBVbOjPdzRF7vbl9mD-H8-f5xNp2HCpiAUOVJKjTNERRDzWJkyjBFkRZYZJAXGmnKhBIsyvKMAaN5QmOMaQ6agU41jMjVzuv_fO-N62RdOmWqChtjeyeBJnEiEsGpRy__oCvbt43_zlOcpwKSiP8KVWuda00h121ZY7uREZXblKVPWW5T9ujFXtjntdEH8CdTD4Q74KOszOZfkZw9Lb6FXwHchVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077693517</pqid></control><display><type>article</type><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</creator><creatorcontrib>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</creatorcontrib><description>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3833</identifier><identifier>PMID: 38715357</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>advection–diffusion problem ; Blood flow ; contrast agent transport ; Contrast agents ; Contrast media ; Finite element method ; Flow simulation ; lattice Boltzmann method ; magnetic resonance imaging ; Mass transfer ; Mathematical analysis ; Mathematical models ; mixed‐hybrid finite element method ; myocardial perfusion ; Myocardium ; Perfusion ; Porous materials ; Porous media ; Two dimensional flow</subject><ispartof>International journal for numerical methods in biomedical engineering, 2024-07, Vol.40 (7), p.e3833-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</citedby><cites>FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</cites><orcidid>0000-0001-7040-9184 ; 0000-0002-7527-2751 ; 0009-0009-0111-3326 ; 0000-0002-9870-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3833$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3833$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38715357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fučík, Radek</creatorcontrib><creatorcontrib>Kovář, Jan</creatorcontrib><creatorcontrib>Škardová, Kateřina</creatorcontrib><creatorcontrib>Polívka, Ondřej</creatorcontrib><creatorcontrib>Chabiniok, Radomír</creatorcontrib><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</description><subject>advection–diffusion problem</subject><subject>Blood flow</subject><subject>contrast agent transport</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>lattice Boltzmann method</subject><subject>magnetic resonance imaging</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mixed‐hybrid finite element method</subject><subject>myocardial perfusion</subject><subject>Myocardium</subject><subject>Perfusion</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Two dimensional flow</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbKkFf4EEvHhJ3WQ22eyxFr-g1Yuel8nuxqYk2ZpNkPrr3dpaQXAOM8Pw8DC8hJxHdBJRGl-rpp5ABnBEhjFlNOSC8ePDDmJAxs6tqK9YCMHhlAwg41ECCR-SxTSosOtKZYIbW3WfNTZNgOt1a1Etg84GNXZL41upsApqq01VNm-BLYJ6YxW2uvTntWmL3pW2OSMnBVbOjPdzRF7vbl9mD-H8-f5xNp2HCpiAUOVJKjTNERRDzWJkyjBFkRZYZJAXGmnKhBIsyvKMAaN5QmOMaQ6agU41jMjVzuv_fO-N62RdOmWqChtjeyeBJnEiEsGpRy__oCvbt43_zlOcpwKSiP8KVWuda00h121ZY7uREZXblKVPWW5T9ujFXtjntdEH8CdTD4Q74KOszOZfkZw9Lb6FXwHchVA</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Fučík, Radek</creator><creator>Kovář, Jan</creator><creator>Škardová, Kateřina</creator><creator>Polívka, Ondřej</creator><creator>Chabiniok, Radomír</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7040-9184</orcidid><orcidid>https://orcid.org/0000-0002-7527-2751</orcidid><orcidid>https://orcid.org/0009-0009-0111-3326</orcidid><orcidid>https://orcid.org/0000-0002-9870-3438</orcidid></search><sort><creationdate>202407</creationdate><title>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</title><author>Fučík, Radek ; Kovář, Jan ; Škardová, Kateřina ; Polívka, Ondřej ; Chabiniok, Radomír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3493-cb569d0ba3c4ad42a4ce4c0a0faf83bfda0649c9418b84340b502a20b3d43d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>advection–diffusion problem</topic><topic>Blood flow</topic><topic>contrast agent transport</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>lattice Boltzmann method</topic><topic>magnetic resonance imaging</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mixed‐hybrid finite element method</topic><topic>myocardial perfusion</topic><topic>Myocardium</topic><topic>Perfusion</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fučík, Radek</creatorcontrib><creatorcontrib>Kovář, Jan</creatorcontrib><creatorcontrib>Škardová, Kateřina</creatorcontrib><creatorcontrib>Polívka, Ondřej</creatorcontrib><creatorcontrib>Chabiniok, Radomír</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fučík, Radek</au><au>Kovář, Jan</au><au>Škardová, Kateřina</au><au>Polívka, Ondřej</au><au>Chabiniok, Radomír</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lattice Boltzmann approach to mathematical modeling of myocardial perfusion</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2024-07</date><risdate>2024</risdate><volume>40</volume><issue>7</issue><spage>e3833</spage><epage>n/a</epage><pages>e3833-n/a</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed‐hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection–diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D‐analog approach to 2D diseased case is proposed and its applicability discussed.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38715357</pmid><doi>10.1002/cnm.3833</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7040-9184</orcidid><orcidid>https://orcid.org/0000-0002-7527-2751</orcidid><orcidid>https://orcid.org/0009-0009-0111-3326</orcidid><orcidid>https://orcid.org/0000-0002-9870-3438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2024-07, Vol.40 (7), p.e3833-n/a
issn 2040-7939
2040-7947
2040-7947
language eng
recordid cdi_proquest_miscellaneous_3052595970
source Wiley Online Library Journals Frontfile Complete
subjects advection–diffusion problem
Blood flow
contrast agent transport
Contrast agents
Contrast media
Finite element method
Flow simulation
lattice Boltzmann method
magnetic resonance imaging
Mass transfer
Mathematical analysis
Mathematical models
mixed‐hybrid finite element method
myocardial perfusion
Myocardium
Perfusion
Porous materials
Porous media
Two dimensional flow
title A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lattice%20Boltzmann%20approach%20to%20mathematical%20modeling%20of%20myocardial%20perfusion&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Fu%C4%8D%C3%ADk,%20Radek&rft.date=2024-07&rft.volume=40&rft.issue=7&rft.spage=e3833&rft.epage=n/a&rft.pages=e3833-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3833&rft_dat=%3Cproquest_cross%3E3077693517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077693517&rft_id=info:pmid/38715357&rfr_iscdi=true