Spectral neural approximations for models of transcriptional dynamics

The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2024-09, Vol.123 (17), p.2892-2901
Hauptverfasser: Gorin, Gennady, Carilli, Maria, Chari, Tara, Pachter, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2901
container_issue 17
container_start_page 2892
container_title Biophysical journal
container_volume 123
creator Gorin, Gennady
Carilli, Maria
Chari, Tara
Pachter, Lior
description The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts. This has prevented the application of standard likelihood-based statistical methods for analyzing high-throughput, multi-species transcriptomic datasets using biophysical models. Inspired by recent work in machine learning to learn solutions to complex dynamical systems, we leverage neural networks and statistical understanding of system distributions to produce accurate approximations to a steady-state bivariate distribution for a model of the RNA life cycle that includes nascent and mature molecules. The steady-state distribution to this simple model has no closed-form solution and requires intensive numerical solving techniques: our approach reduces likelihood evaluation time by several orders of magnitude. We demonstrate two approaches, whereby solutions are approximated by 1) learning the weights of kernel distributions with constrained parameters or 2) learning both weights and scaling factors for parameters of kernel distributions. We show that our strategies, denoted by kernel weight regression and parameter-scaled kernel weight regression, respectively, enable broad exploration of parameter space and can be used in existing likelihood frameworks to infer transcriptional burst sizes, RNA splicing rates, and mRNA degradation rates from experimental transcriptomic data.
doi_str_mv 10.1016/j.bpj.2024.04.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3052595967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634952400314X</els_id><sourcerecordid>3052595967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-70dddae3fe405a2e3cdc200940556a7d49b37304ba6864464c211e8b043f803b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6A7xIj166TpqkH3iSZf2ABQ_qOaTJFFL6ZdKK--9N2dWjMDAM88xL8hByTWFNgaZ39boc6nUCCV9DKMZPyJIKnsQAeXpKlgCQxowXYkEuvK8BaCKAnpMFyzMqmMiXZPs2oB6daqIOp7mpYXD9t23VaPvOR1XvorY32Pior6IAdl47O8zLAJt9p1qr_SU5q1Tj8erYV-Tjcfu-eY53r08vm4ddrBnPxzgDY4xCViEHoRJk2ugEoAiTSFVmeFGyjAEvVZqnnKdcJ5RiXgJnVQ6sZCtye8gNb_yc0I-ytV5j06gO-8lLBiIRhSjSLKD0gGrXe--wkoMLv3J7SUHO9mQtgz0525MQivFwc3OMn8oWzd_Fr64A3B-A4AO_LDrptcVOo7EuaJSmt__E_wAVvH_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052595967</pqid></control><display><type>article</type><title>Spectral neural approximations for models of transcriptional dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gorin, Gennady ; Carilli, Maria ; Chari, Tara ; Pachter, Lior</creator><creatorcontrib>Gorin, Gennady ; Carilli, Maria ; Chari, Tara ; Pachter, Lior</creatorcontrib><description>The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts. This has prevented the application of standard likelihood-based statistical methods for analyzing high-throughput, multi-species transcriptomic datasets using biophysical models. Inspired by recent work in machine learning to learn solutions to complex dynamical systems, we leverage neural networks and statistical understanding of system distributions to produce accurate approximations to a steady-state bivariate distribution for a model of the RNA life cycle that includes nascent and mature molecules. The steady-state distribution to this simple model has no closed-form solution and requires intensive numerical solving techniques: our approach reduces likelihood evaluation time by several orders of magnitude. We demonstrate two approaches, whereby solutions are approximated by 1) learning the weights of kernel distributions with constrained parameters or 2) learning both weights and scaling factors for parameters of kernel distributions. We show that our strategies, denoted by kernel weight regression and parameter-scaled kernel weight regression, respectively, enable broad exploration of parameter space and can be used in existing likelihood frameworks to infer transcriptional burst sizes, RNA splicing rates, and mRNA degradation rates from experimental transcriptomic data.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.04.034</identifier><identifier>PMID: 38715358</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Models, Genetic ; Neural Networks, Computer ; Transcription, Genetic</subject><ispartof>Biophysical journal, 2024-09, Vol.123 (17), p.2892-2901</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-70dddae3fe405a2e3cdc200940556a7d49b37304ba6864464c211e8b043f803b3</cites><orcidid>0000-0002-9164-6231 ; 0000-0002-8977-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634952400314X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38715358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorin, Gennady</creatorcontrib><creatorcontrib>Carilli, Maria</creatorcontrib><creatorcontrib>Chari, Tara</creatorcontrib><creatorcontrib>Pachter, Lior</creatorcontrib><title>Spectral neural approximations for models of transcriptional dynamics</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts. This has prevented the application of standard likelihood-based statistical methods for analyzing high-throughput, multi-species transcriptomic datasets using biophysical models. Inspired by recent work in machine learning to learn solutions to complex dynamical systems, we leverage neural networks and statistical understanding of system distributions to produce accurate approximations to a steady-state bivariate distribution for a model of the RNA life cycle that includes nascent and mature molecules. The steady-state distribution to this simple model has no closed-form solution and requires intensive numerical solving techniques: our approach reduces likelihood evaluation time by several orders of magnitude. We demonstrate two approaches, whereby solutions are approximated by 1) learning the weights of kernel distributions with constrained parameters or 2) learning both weights and scaling factors for parameters of kernel distributions. We show that our strategies, denoted by kernel weight regression and parameter-scaled kernel weight regression, respectively, enable broad exploration of parameter space and can be used in existing likelihood frameworks to infer transcriptional burst sizes, RNA splicing rates, and mRNA degradation rates from experimental transcriptomic data.</description><subject>Models, Genetic</subject><subject>Neural Networks, Computer</subject><subject>Transcription, Genetic</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6A7xIj166TpqkH3iSZf2ABQ_qOaTJFFL6ZdKK--9N2dWjMDAM88xL8hByTWFNgaZ39boc6nUCCV9DKMZPyJIKnsQAeXpKlgCQxowXYkEuvK8BaCKAnpMFyzMqmMiXZPs2oB6daqIOp7mpYXD9t23VaPvOR1XvorY32Pior6IAdl47O8zLAJt9p1qr_SU5q1Tj8erYV-Tjcfu-eY53r08vm4ddrBnPxzgDY4xCViEHoRJk2ugEoAiTSFVmeFGyjAEvVZqnnKdcJ5RiXgJnVQ6sZCtye8gNb_yc0I-ytV5j06gO-8lLBiIRhSjSLKD0gGrXe--wkoMLv3J7SUHO9mQtgz0525MQivFwc3OMn8oWzd_Fr64A3B-A4AO_LDrptcVOo7EuaJSmt__E_wAVvH_a</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Gorin, Gennady</creator><creator>Carilli, Maria</creator><creator>Chari, Tara</creator><creator>Pachter, Lior</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9164-6231</orcidid><orcidid>https://orcid.org/0000-0002-8977-7224</orcidid></search><sort><creationdate>20240903</creationdate><title>Spectral neural approximations for models of transcriptional dynamics</title><author>Gorin, Gennady ; Carilli, Maria ; Chari, Tara ; Pachter, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-70dddae3fe405a2e3cdc200940556a7d49b37304ba6864464c211e8b043f803b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Models, Genetic</topic><topic>Neural Networks, Computer</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorin, Gennady</creatorcontrib><creatorcontrib>Carilli, Maria</creatorcontrib><creatorcontrib>Chari, Tara</creatorcontrib><creatorcontrib>Pachter, Lior</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorin, Gennady</au><au>Carilli, Maria</au><au>Chari, Tara</au><au>Pachter, Lior</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral neural approximations for models of transcriptional dynamics</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>123</volume><issue>17</issue><spage>2892</spage><epage>2901</epage><pages>2892-2901</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts. This has prevented the application of standard likelihood-based statistical methods for analyzing high-throughput, multi-species transcriptomic datasets using biophysical models. Inspired by recent work in machine learning to learn solutions to complex dynamical systems, we leverage neural networks and statistical understanding of system distributions to produce accurate approximations to a steady-state bivariate distribution for a model of the RNA life cycle that includes nascent and mature molecules. The steady-state distribution to this simple model has no closed-form solution and requires intensive numerical solving techniques: our approach reduces likelihood evaluation time by several orders of magnitude. We demonstrate two approaches, whereby solutions are approximated by 1) learning the weights of kernel distributions with constrained parameters or 2) learning both weights and scaling factors for parameters of kernel distributions. We show that our strategies, denoted by kernel weight regression and parameter-scaled kernel weight regression, respectively, enable broad exploration of parameter space and can be used in existing likelihood frameworks to infer transcriptional burst sizes, RNA splicing rates, and mRNA degradation rates from experimental transcriptomic data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38715358</pmid><doi>10.1016/j.bpj.2024.04.034</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9164-6231</orcidid><orcidid>https://orcid.org/0000-0002-8977-7224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2024-09, Vol.123 (17), p.2892-2901
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_proquest_miscellaneous_3052595967
source MEDLINE; Elsevier ScienceDirect Journals
subjects Models, Genetic
Neural Networks, Computer
Transcription, Genetic
title Spectral neural approximations for models of transcriptional dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20neural%20approximations%20for%20models%20of%20transcriptional%20dynamics&rft.jtitle=Biophysical%20journal&rft.au=Gorin,%20Gennady&rft.date=2024-09-03&rft.volume=123&rft.issue=17&rft.spage=2892&rft.epage=2901&rft.pages=2892-2901&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.04.034&rft_dat=%3Cproquest_cross%3E3052595967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052595967&rft_id=info:pmid/38715358&rft_els_id=S000634952400314X&rfr_iscdi=true