Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study
Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assu...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (19), p.14364-14373 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14373 |
---|---|
container_issue | 19 |
container_start_page | 14364 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | He, Yue Chen, Furui Zhou, Gang |
description | Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts. |
doi_str_mv | 10.1039/d4cp00616j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051941277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051941277</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-213cb22f5d2e8e833694b6fd47f3dc5001888b0285f47f06688b66837e59523a3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0EEqWw8ASWWMoQ8F-chA1FUJAqWGCunNhpXaV28M-QjXfgAXg3ngRTEEOXe889-nR0LgDnGF1hRKtrydoBIY755gBMMOM0q1DJDv91wY_BifcbhBDOMZ2Az7kTw1oH3cJWuMYaaHRwWiro4zBYF5SET_rr_aO2UEbRZyLYbUKD6EcfPGzUaM0Pgme1xZfQa7Pq1T7VWQfXo3R2pQwcnJWxDdqaGyigVMbrMMIump0nehjWyroR-hDleAqOOtF7dfa3p-D1_u6lfsgWz_PH-naRDQTzkBFM24aQLpdElaqklFes4Z1kRUdlm6dvy7JsECnzLlmI83SlQQuVVzmhgk7B7Dc3tXuLyoflVvtW9b0wyka_pCjHFcOkKBJ6sYdubHSp-I5iRUUZLek3WCt79A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054793438</pqid></control><display><type>article</type><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>He, Yue ; Chen, Furui ; Zhou, Gang</creator><creatorcontrib>He, Yue ; Chen, Furui ; Zhou, Gang</creatorcontrib><description>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00616j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aggregates ; Atomic properties ; Carbon nitride ; Catalytic activity ; Density functional theory ; Hydrogen evolution ; Hydrogen production ; Molds ; Single atom catalysts ; Two dimensional materials</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14364-14373</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Yue</creatorcontrib><creatorcontrib>Chen, Furui</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><title>Physical chemistry chemical physics : PCCP</title><description>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</description><subject>Aggregates</subject><subject>Atomic properties</subject><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Molds</subject><subject>Single atom catalysts</subject><subject>Two dimensional materials</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0EEqWw8ASWWMoQ8F-chA1FUJAqWGCunNhpXaV28M-QjXfgAXg3ngRTEEOXe889-nR0LgDnGF1hRKtrydoBIY755gBMMOM0q1DJDv91wY_BifcbhBDOMZ2Az7kTw1oH3cJWuMYaaHRwWiro4zBYF5SET_rr_aO2UEbRZyLYbUKD6EcfPGzUaM0Pgme1xZfQa7Pq1T7VWQfXo3R2pQwcnJWxDdqaGyigVMbrMMIump0nehjWyroR-hDleAqOOtF7dfa3p-D1_u6lfsgWz_PH-naRDQTzkBFM24aQLpdElaqklFes4Z1kRUdlm6dvy7JsECnzLlmI83SlQQuVVzmhgk7B7Dc3tXuLyoflVvtW9b0wyka_pCjHFcOkKBJ6sYdubHSp-I5iRUUZLek3WCt79A</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>He, Yue</creator><creator>Chen, Furui</creator><creator>Zhou, Gang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240515</creationdate><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><author>He, Yue ; Chen, Furui ; Zhou, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-213cb22f5d2e8e833694b6fd47f3dc5001888b0285f47f06688b66837e59523a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Atomic properties</topic><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Molds</topic><topic>Single atom catalysts</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yue</creatorcontrib><creatorcontrib>Chen, Furui</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yue</au><au>Chen, Furui</au><au>Zhou, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>26</volume><issue>19</issue><spage>14364</spage><epage>14373</epage><pages>14364-14373</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp00616j</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14364-14373 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_3051941277 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aggregates Atomic properties Carbon nitride Catalytic activity Density functional theory Hydrogen evolution Hydrogen production Molds Single atom catalysts Two dimensional materials |
title | Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphitic%20carbon%20nitride%20supported%20Ni%E2%80%93Co%20dual-atom%20catalysts%20beyond%20Ni1(Co1)%20single-atom%20catalysts%20for%20hydrogen%20production:%20a%20density%20functional%20theory%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=He,%20Yue&rft.date=2024-05-15&rft.volume=26&rft.issue=19&rft.spage=14364&rft.epage=14373&rft.pages=14364-14373&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00616j&rft_dat=%3Cproquest%3E3051941277%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054793438&rft_id=info:pmid/&rfr_iscdi=true |