Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study

Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (19), p.14364-14373
Hauptverfasser: He, Yue, Chen, Furui, Zhou, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14373
container_issue 19
container_start_page 14364
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator He, Yue
Chen, Furui
Zhou, Gang
description Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.
doi_str_mv 10.1039/d4cp00616j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051941277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051941277</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-213cb22f5d2e8e833694b6fd47f3dc5001888b0285f47f06688b66837e59523a3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0EEqWw8ASWWMoQ8F-chA1FUJAqWGCunNhpXaV28M-QjXfgAXg3ngRTEEOXe889-nR0LgDnGF1hRKtrydoBIY755gBMMOM0q1DJDv91wY_BifcbhBDOMZ2Az7kTw1oH3cJWuMYaaHRwWiro4zBYF5SET_rr_aO2UEbRZyLYbUKD6EcfPGzUaM0Pgme1xZfQa7Pq1T7VWQfXo3R2pQwcnJWxDdqaGyigVMbrMMIump0nehjWyroR-hDleAqOOtF7dfa3p-D1_u6lfsgWz_PH-naRDQTzkBFM24aQLpdElaqklFes4Z1kRUdlm6dvy7JsECnzLlmI83SlQQuVVzmhgk7B7Dc3tXuLyoflVvtW9b0wyka_pCjHFcOkKBJ6sYdubHSp-I5iRUUZLek3WCt79A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054793438</pqid></control><display><type>article</type><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>He, Yue ; Chen, Furui ; Zhou, Gang</creator><creatorcontrib>He, Yue ; Chen, Furui ; Zhou, Gang</creatorcontrib><description>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00616j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aggregates ; Atomic properties ; Carbon nitride ; Catalytic activity ; Density functional theory ; Hydrogen evolution ; Hydrogen production ; Molds ; Single atom catalysts ; Two dimensional materials</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14364-14373</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Yue</creatorcontrib><creatorcontrib>Chen, Furui</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><title>Physical chemistry chemical physics : PCCP</title><description>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</description><subject>Aggregates</subject><subject>Atomic properties</subject><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Molds</subject><subject>Single atom catalysts</subject><subject>Two dimensional materials</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0EEqWw8ASWWMoQ8F-chA1FUJAqWGCunNhpXaV28M-QjXfgAXg3ngRTEEOXe889-nR0LgDnGF1hRKtrydoBIY755gBMMOM0q1DJDv91wY_BifcbhBDOMZ2Az7kTw1oH3cJWuMYaaHRwWiro4zBYF5SET_rr_aO2UEbRZyLYbUKD6EcfPGzUaM0Pgme1xZfQa7Pq1T7VWQfXo3R2pQwcnJWxDdqaGyigVMbrMMIump0nehjWyroR-hDleAqOOtF7dfa3p-D1_u6lfsgWz_PH-naRDQTzkBFM24aQLpdElaqklFes4Z1kRUdlm6dvy7JsECnzLlmI83SlQQuVVzmhgk7B7Dc3tXuLyoflVvtW9b0wyka_pCjHFcOkKBJ6sYdubHSp-I5iRUUZLek3WCt79A</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>He, Yue</creator><creator>Chen, Furui</creator><creator>Zhou, Gang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240515</creationdate><title>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</title><author>He, Yue ; Chen, Furui ; Zhou, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-213cb22f5d2e8e833694b6fd47f3dc5001888b0285f47f06688b66837e59523a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Atomic properties</topic><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Molds</topic><topic>Single atom catalysts</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yue</creatorcontrib><creatorcontrib>Chen, Furui</creatorcontrib><creatorcontrib>Zhou, Gang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yue</au><au>Chen, Furui</au><au>Zhou, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>26</volume><issue>19</issue><spage>14364</spage><epage>14373</epage><pages>14364-14373</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni–Co (Ni–Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni–Co/gh-C3N4, which would possess more active sites and a more complex structure–activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni–Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp00616j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14364-14373
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_3051941277
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aggregates
Atomic properties
Carbon nitride
Catalytic activity
Density functional theory
Hydrogen evolution
Hydrogen production
Molds
Single atom catalysts
Two dimensional materials
title Graphitic carbon nitride supported Ni–Co dual-atom catalysts beyond Ni1(Co1) single-atom catalysts for hydrogen production: a density functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphitic%20carbon%20nitride%20supported%20Ni%E2%80%93Co%20dual-atom%20catalysts%20beyond%20Ni1(Co1)%20single-atom%20catalysts%20for%20hydrogen%20production:%20a%20density%20functional%20theory%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=He,%20Yue&rft.date=2024-05-15&rft.volume=26&rft.issue=19&rft.spage=14364&rft.epage=14373&rft.pages=14364-14373&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00616j&rft_dat=%3Cproquest%3E3051941277%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054793438&rft_id=info:pmid/&rfr_iscdi=true