Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors

Abstract Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrine reviews 2024-09, Vol.45 (5), p.755-771
1. Verfasser: Potter, Lincoln R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 5
container_start_page 755
container_title Endocrine reviews
container_volume 45
creator Potter, Lincoln R
description Abstract Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future. Graphical Abstract Graphical Abstract
doi_str_mv 10.1210/endrev/bnae015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051940867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/endrev/bnae015</oup_id><sourcerecordid>3113462022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-dce75d1615a2af5e42a98edf3bff3f38e01f55b5d514228a4e2688e620898a923</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMobk6vHiXgRQ_V_Gja9DiqTkFRRMFbSNsXt9E1NWmF_vdGOj148RQI3_t470PomJILyii5hKZy8HlZNBoIFTtoSrNYRCmV2S6aEprwKE2ytwk68H5NCImJzPbRhMuUciL5FKmnpfXt0rqh1t3KNtEVtMEJTYef4b0fP7E1eNHrZqiHGudDWWsP-GyRn0dzrJsKP3ZLcPgBNoXTDeBFHmZLaDvr_CHaM7r2cLR9Z-j15volv43uHxd3-fw-KplkXVSVkIqKJlRopo2AmOlMQmV4YQw3XIbjjBCFqASNGZM6BpZICQkL90idMT5DZ6O3dfajB9-pzcqXUNdhIdt7xYkIZYhM0oCe_kHXtndN2E5xSnkcpOxbeDFSpbPeOzCqdauNdoOiRH2nV2N6tU0fBk622r7YQPWL_7QOwPkI2L79T_YFgVeOlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113462022</pqid></control><display><type>article</type><title>Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Potter, Lincoln R</creator><creatorcontrib>Potter, Lincoln R</creatorcontrib><description>Abstract Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 0163-769X</identifier><identifier>ISSN: 1945-7189</identifier><identifier>EISSN: 1945-7189</identifier><identifier>DOI: 10.1210/endrev/bnae015</identifier><identifier>PMID: 38713083</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Achondroplasia ; Animals ; Bone density ; Bone growth ; Cyclic GMP ; Dephosphorylation ; Enzymes ; Gametocytes ; Guanylate cyclase ; Homology ; Humans ; Hypertrophy ; Inactivation ; Kinases ; Long bone ; Meiosis ; Membranes ; Mice ; Peptides ; Phosphorylation ; Receptors ; Receptors, Atrial Natriuretic Factor - metabolism ; Receptors, Guanylate Cyclase-Coupled - metabolism ; Sea urchins ; Signal Transduction - physiology</subject><ispartof>Endocrine reviews, 2024-09, Vol.45 (5), p.755-771</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-dce75d1615a2af5e42a98edf3bff3f38e01f55b5d514228a4e2688e620898a923</cites><orcidid>0000-0001-6461-4288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38713083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potter, Lincoln R</creatorcontrib><title>Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors</title><title>Endocrine reviews</title><addtitle>Endocr Rev</addtitle><description>Abstract Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future. Graphical Abstract Graphical Abstract</description><subject>Achondroplasia</subject><subject>Animals</subject><subject>Bone density</subject><subject>Bone growth</subject><subject>Cyclic GMP</subject><subject>Dephosphorylation</subject><subject>Enzymes</subject><subject>Gametocytes</subject><subject>Guanylate cyclase</subject><subject>Homology</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Long bone</subject><subject>Meiosis</subject><subject>Membranes</subject><subject>Mice</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Receptors</subject><subject>Receptors, Atrial Natriuretic Factor - metabolism</subject><subject>Receptors, Guanylate Cyclase-Coupled - metabolism</subject><subject>Sea urchins</subject><subject>Signal Transduction - physiology</subject><issn>0163-769X</issn><issn>1945-7189</issn><issn>1945-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUgIMobk6vHiXgRQ_V_Gja9DiqTkFRRMFbSNsXt9E1NWmF_vdGOj148RQI3_t470PomJILyii5hKZy8HlZNBoIFTtoSrNYRCmV2S6aEprwKE2ytwk68H5NCImJzPbRhMuUciL5FKmnpfXt0rqh1t3KNtEVtMEJTYef4b0fP7E1eNHrZqiHGudDWWsP-GyRn0dzrJsKP3ZLcPgBNoXTDeBFHmZLaDvr_CHaM7r2cLR9Z-j15volv43uHxd3-fw-KplkXVSVkIqKJlRopo2AmOlMQmV4YQw3XIbjjBCFqASNGZM6BpZICQkL90idMT5DZ6O3dfajB9-pzcqXUNdhIdt7xYkIZYhM0oCe_kHXtndN2E5xSnkcpOxbeDFSpbPeOzCqdauNdoOiRH2nV2N6tU0fBk622r7YQPWL_7QOwPkI2L79T_YFgVeOlA</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Potter, Lincoln R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6461-4288</orcidid></search><sort><creationdate>20240912</creationdate><title>Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors</title><author>Potter, Lincoln R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-dce75d1615a2af5e42a98edf3bff3f38e01f55b5d514228a4e2688e620898a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Achondroplasia</topic><topic>Animals</topic><topic>Bone density</topic><topic>Bone growth</topic><topic>Cyclic GMP</topic><topic>Dephosphorylation</topic><topic>Enzymes</topic><topic>Gametocytes</topic><topic>Guanylate cyclase</topic><topic>Homology</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Long bone</topic><topic>Meiosis</topic><topic>Membranes</topic><topic>Mice</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Receptors</topic><topic>Receptors, Atrial Natriuretic Factor - metabolism</topic><topic>Receptors, Guanylate Cyclase-Coupled - metabolism</topic><topic>Sea urchins</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potter, Lincoln R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrine reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potter, Lincoln R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors</atitle><jtitle>Endocrine reviews</jtitle><addtitle>Endocr Rev</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>755</spage><epage>771</epage><pages>755-771</pages><issn>0163-769X</issn><issn>1945-7189</issn><eissn>1945-7189</eissn><abstract>Abstract Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future. Graphical Abstract Graphical Abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38713083</pmid><doi>10.1210/endrev/bnae015</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6461-4288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-769X
ispartof Endocrine reviews, 2024-09, Vol.45 (5), p.755-771
issn 0163-769X
1945-7189
1945-7189
language eng
recordid cdi_proquest_miscellaneous_3051940867
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Achondroplasia
Animals
Bone density
Bone growth
Cyclic GMP
Dephosphorylation
Enzymes
Gametocytes
Guanylate cyclase
Homology
Humans
Hypertrophy
Inactivation
Kinases
Long bone
Meiosis
Membranes
Mice
Peptides
Phosphorylation
Receptors
Receptors, Atrial Natriuretic Factor - metabolism
Receptors, Guanylate Cyclase-Coupled - metabolism
Sea urchins
Signal Transduction - physiology
title Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation-Dependent%20Regulation%20of%20Guanylyl%20Cyclase%20(GC)-A%20and%20Other%20Membrane%20GC%20Receptors&rft.jtitle=Endocrine%20reviews&rft.au=Potter,%20Lincoln%20R&rft.date=2024-09-12&rft.volume=45&rft.issue=5&rft.spage=755&rft.epage=771&rft.pages=755-771&rft.issn=0163-769X&rft.eissn=1945-7189&rft_id=info:doi/10.1210/endrev/bnae015&rft_dat=%3Cproquest_cross%3E3113462022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113462022&rft_id=info:pmid/38713083&rft_oup_id=10.1210/endrev/bnae015&rfr_iscdi=true