Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial

Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacology and therapeutics 2024-09, Vol.116 (3), p.824-833
Hauptverfasser: Janssen Daalen, Jules M., Doesburg, Djoeke, Hunik, Liesbeth, Kessel, Rogier, Herngreen, Thomas, Knol, Dennis, Ruys, Thony, Bemt, Bart J.F., Schers, Henk J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 3
container_start_page 824
container_title Clinical pharmacology and therapeutics
container_volume 116
creator Janssen Daalen, Jules M.
Doesburg, Djoeke
Hunik, Liesbeth
Kessel, Rogier
Herngreen, Thomas
Knol, Dennis
Ruys, Thony
Bemt, Bart J.F.
Schers, Henk J.
description Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no such models exist for primary care. Furthermore, introduction of decision‐support algorithms in healthcare is limited due to the substantial gap between developers and clinicians' perspectives. We report the development, validation, and a clinical simulation trial of the first MIPD application for primary care. Stable maintenance dosage of levothyroxine was the model target. The multiclass model generates predictions for individual patients, for different dosing classes. Random forest was trained and tested on a national primary care database (n = 19,004) with a final weighted AUC across dosing options of 0.71, even in subclinical hypothyroidism. TSH, fT4, weight, and age were most predictive. To assess the safety, feasibility, and clinical impact of MIPD for levothyroxine, we performed clinical simulation studies in GPs and compared MIPD to traditional prescription. Fifty‐one GPs selected starting dosages for 20 primary hypothyroidism cases without and then with MIPD 2 weeks later. Overdosage and underdosage were defined as higher and lower than 12.5 μg relative to stable maintenance dosage. MIPD decreased overdosage in number (30.5 to 23.9%, P 
doi_str_mv 10.1002/cpt.3293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051938371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051938371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3163-57cbbeccd21cf81bcaf9450d18bc3e16c1f673fd94840ed7796867d7570ac083</originalsourceid><addsrcrecordid>eNp1kcFuEzEQhi0EIqEg8QRojxy6rb3Orr3cUErTSqlaicB15R3PUiOvHexNaG48AhdesE9SbxPg1MuMZubTd5ifkLeMnjBKi1NYDye8qPkzMmUlL_Kq5OVzMqWU1nld8GpCXsX4PY2zWsqXZMKlYIxLOSV_rrxGe__r96XrfOhRZzcBwUTjXXbmo3Hfsi-P9UrBrXGYLVEFNy4SnoatH253wd-NJ-OyBToMyiaJgsEAfsjOcIvWr3t0w3H2VVmj1TDKldPZ3BpnIOGfTb-x-_0qGGVfkxedshHfHPoRWZ1_Ws0v8uX14nL-cZkDZxXPSwFtiwC6YNBJ1oLq6llJNZMtcGQVsK4SvNP1TM4oaiHqSlZCi1JQBVTyI_J-r10H_2ODcWh6EwGtVQ79Jjaclqzmkgv2H4XgYwzYNetgehV2DaPNmEGTMmjGDBL67mDdtOmh_8C_T09Avgd-Gou7J0XN_Gb1KHwA8nKTwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051938371</pqid></control><display><type>article</type><title>Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Janssen Daalen, Jules M. ; Doesburg, Djoeke ; Hunik, Liesbeth ; Kessel, Rogier ; Herngreen, Thomas ; Knol, Dennis ; Ruys, Thony ; Bemt, Bart J.F. ; Schers, Henk J.</creator><creatorcontrib>Janssen Daalen, Jules M. ; Doesburg, Djoeke ; Hunik, Liesbeth ; Kessel, Rogier ; Herngreen, Thomas ; Knol, Dennis ; Ruys, Thony ; Bemt, Bart J.F. ; Schers, Henk J.</creatorcontrib><description>Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no such models exist for primary care. Furthermore, introduction of decision‐support algorithms in healthcare is limited due to the substantial gap between developers and clinicians' perspectives. We report the development, validation, and a clinical simulation trial of the first MIPD application for primary care. Stable maintenance dosage of levothyroxine was the model target. The multiclass model generates predictions for individual patients, for different dosing classes. Random forest was trained and tested on a national primary care database (n = 19,004) with a final weighted AUC across dosing options of 0.71, even in subclinical hypothyroidism. TSH, fT4, weight, and age were most predictive. To assess the safety, feasibility, and clinical impact of MIPD for levothyroxine, we performed clinical simulation studies in GPs and compared MIPD to traditional prescription. Fifty‐one GPs selected starting dosages for 20 primary hypothyroidism cases without and then with MIPD 2 weeks later. Overdosage and underdosage were defined as higher and lower than 12.5 μg relative to stable maintenance dosage. MIPD decreased overdosage in number (30.5 to 23.9%, P &lt; 0.01) and magnitude (median 50 to 37.5 μg, P &lt; 0.01) and increased optimal starting dosages (18.3 to 30.2%, P &lt; 0.01). GPs considered lab results more often with MIPD and most would use the model frequently. This study demonstrates the clinical relevance, safety, and effectiveness of MIPD for levothyroxine in primary care.</description><identifier>ISSN: 0009-9236</identifier><identifier>ISSN: 1532-6535</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.3293</identifier><identifier>PMID: 38711388</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Computer Simulation ; Dose-Response Relationship, Drug ; Female ; General Practice ; Humans ; Hypothyroidism - drug therapy ; Machine Learning ; Male ; Middle Aged ; Models, Biological ; Precision Medicine - methods ; Primary Health Care ; Thyroxine - administration &amp; dosage ; Thyroxine - pharmacokinetics ; Thyroxine - therapeutic use</subject><ispartof>Clinical pharmacology and therapeutics, 2024-09, Vol.116 (3), p.824-833</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2024 The Authors. Clinical Pharmacology &amp; Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3163-57cbbeccd21cf81bcaf9450d18bc3e16c1f673fd94840ed7796867d7570ac083</cites><orcidid>0000-0003-4791-8823 ; 0000-0002-8560-9514 ; 0000-0001-6290-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpt.3293$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpt.3293$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38711388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janssen Daalen, Jules M.</creatorcontrib><creatorcontrib>Doesburg, Djoeke</creatorcontrib><creatorcontrib>Hunik, Liesbeth</creatorcontrib><creatorcontrib>Kessel, Rogier</creatorcontrib><creatorcontrib>Herngreen, Thomas</creatorcontrib><creatorcontrib>Knol, Dennis</creatorcontrib><creatorcontrib>Ruys, Thony</creatorcontrib><creatorcontrib>Bemt, Bart J.F.</creatorcontrib><creatorcontrib>Schers, Henk J.</creatorcontrib><title>Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no such models exist for primary care. Furthermore, introduction of decision‐support algorithms in healthcare is limited due to the substantial gap between developers and clinicians' perspectives. We report the development, validation, and a clinical simulation trial of the first MIPD application for primary care. Stable maintenance dosage of levothyroxine was the model target. The multiclass model generates predictions for individual patients, for different dosing classes. Random forest was trained and tested on a national primary care database (n = 19,004) with a final weighted AUC across dosing options of 0.71, even in subclinical hypothyroidism. TSH, fT4, weight, and age were most predictive. To assess the safety, feasibility, and clinical impact of MIPD for levothyroxine, we performed clinical simulation studies in GPs and compared MIPD to traditional prescription. Fifty‐one GPs selected starting dosages for 20 primary hypothyroidism cases without and then with MIPD 2 weeks later. Overdosage and underdosage were defined as higher and lower than 12.5 μg relative to stable maintenance dosage. MIPD decreased overdosage in number (30.5 to 23.9%, P &lt; 0.01) and magnitude (median 50 to 37.5 μg, P &lt; 0.01) and increased optimal starting dosages (18.3 to 30.2%, P &lt; 0.01). GPs considered lab results more often with MIPD and most would use the model frequently. This study demonstrates the clinical relevance, safety, and effectiveness of MIPD for levothyroxine in primary care.</description><subject>Adult</subject><subject>Aged</subject><subject>Computer Simulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>General Practice</subject><subject>Humans</subject><subject>Hypothyroidism - drug therapy</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Precision Medicine - methods</subject><subject>Primary Health Care</subject><subject>Thyroxine - administration &amp; dosage</subject><subject>Thyroxine - pharmacokinetics</subject><subject>Thyroxine - therapeutic use</subject><issn>0009-9236</issn><issn>1532-6535</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFuEzEQhi0EIqEg8QRojxy6rb3Orr3cUErTSqlaicB15R3PUiOvHexNaG48AhdesE9SbxPg1MuMZubTd5ifkLeMnjBKi1NYDye8qPkzMmUlL_Kq5OVzMqWU1nld8GpCXsX4PY2zWsqXZMKlYIxLOSV_rrxGe__r96XrfOhRZzcBwUTjXXbmo3Hfsi-P9UrBrXGYLVEFNy4SnoatH253wd-NJ-OyBToMyiaJgsEAfsjOcIvWr3t0w3H2VVmj1TDKldPZ3BpnIOGfTb-x-_0qGGVfkxedshHfHPoRWZ1_Ws0v8uX14nL-cZkDZxXPSwFtiwC6YNBJ1oLq6llJNZMtcGQVsK4SvNP1TM4oaiHqSlZCi1JQBVTyI_J-r10H_2ODcWh6EwGtVQ79Jjaclqzmkgv2H4XgYwzYNetgehV2DaPNmEGTMmjGDBL67mDdtOmh_8C_T09Avgd-Gou7J0XN_Gb1KHwA8nKTwA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Janssen Daalen, Jules M.</creator><creator>Doesburg, Djoeke</creator><creator>Hunik, Liesbeth</creator><creator>Kessel, Rogier</creator><creator>Herngreen, Thomas</creator><creator>Knol, Dennis</creator><creator>Ruys, Thony</creator><creator>Bemt, Bart J.F.</creator><creator>Schers, Henk J.</creator><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4791-8823</orcidid><orcidid>https://orcid.org/0000-0002-8560-9514</orcidid><orcidid>https://orcid.org/0000-0001-6290-5882</orcidid></search><sort><creationdate>202409</creationdate><title>Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial</title><author>Janssen Daalen, Jules M. ; Doesburg, Djoeke ; Hunik, Liesbeth ; Kessel, Rogier ; Herngreen, Thomas ; Knol, Dennis ; Ruys, Thony ; Bemt, Bart J.F. ; Schers, Henk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3163-57cbbeccd21cf81bcaf9450d18bc3e16c1f673fd94840ed7796867d7570ac083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Computer Simulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>General Practice</topic><topic>Humans</topic><topic>Hypothyroidism - drug therapy</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Precision Medicine - methods</topic><topic>Primary Health Care</topic><topic>Thyroxine - administration &amp; dosage</topic><topic>Thyroxine - pharmacokinetics</topic><topic>Thyroxine - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen Daalen, Jules M.</creatorcontrib><creatorcontrib>Doesburg, Djoeke</creatorcontrib><creatorcontrib>Hunik, Liesbeth</creatorcontrib><creatorcontrib>Kessel, Rogier</creatorcontrib><creatorcontrib>Herngreen, Thomas</creatorcontrib><creatorcontrib>Knol, Dennis</creatorcontrib><creatorcontrib>Ruys, Thony</creatorcontrib><creatorcontrib>Bemt, Bart J.F.</creatorcontrib><creatorcontrib>Schers, Henk J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen Daalen, Jules M.</au><au>Doesburg, Djoeke</au><au>Hunik, Liesbeth</au><au>Kessel, Rogier</au><au>Herngreen, Thomas</au><au>Knol, Dennis</au><au>Ruys, Thony</au><au>Bemt, Bart J.F.</au><au>Schers, Henk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2024-09</date><risdate>2024</risdate><volume>116</volume><issue>3</issue><spage>824</spage><epage>833</epage><pages>824-833</pages><issn>0009-9236</issn><issn>1532-6535</issn><eissn>1532-6535</eissn><abstract>Levothyroxine is one of the most prescribed drugs in the western world. Dosing is challenging due to high‐interindividual differences in effective dosage and the narrow therapeutic window. Model‐informed precision dosing (MIPD) using machine learning could assist general practitioners (GPs), but no such models exist for primary care. Furthermore, introduction of decision‐support algorithms in healthcare is limited due to the substantial gap between developers and clinicians' perspectives. We report the development, validation, and a clinical simulation trial of the first MIPD application for primary care. Stable maintenance dosage of levothyroxine was the model target. The multiclass model generates predictions for individual patients, for different dosing classes. Random forest was trained and tested on a national primary care database (n = 19,004) with a final weighted AUC across dosing options of 0.71, even in subclinical hypothyroidism. TSH, fT4, weight, and age were most predictive. To assess the safety, feasibility, and clinical impact of MIPD for levothyroxine, we performed clinical simulation studies in GPs and compared MIPD to traditional prescription. Fifty‐one GPs selected starting dosages for 20 primary hypothyroidism cases without and then with MIPD 2 weeks later. Overdosage and underdosage were defined as higher and lower than 12.5 μg relative to stable maintenance dosage. MIPD decreased overdosage in number (30.5 to 23.9%, P &lt; 0.01) and magnitude (median 50 to 37.5 μg, P &lt; 0.01) and increased optimal starting dosages (18.3 to 30.2%, P &lt; 0.01). GPs considered lab results more often with MIPD and most would use the model frequently. This study demonstrates the clinical relevance, safety, and effectiveness of MIPD for levothyroxine in primary care.</abstract><cop>United States</cop><pmid>38711388</pmid><doi>10.1002/cpt.3293</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4791-8823</orcidid><orcidid>https://orcid.org/0000-0002-8560-9514</orcidid><orcidid>https://orcid.org/0000-0001-6290-5882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9236
ispartof Clinical pharmacology and therapeutics, 2024-09, Vol.116 (3), p.824-833
issn 0009-9236
1532-6535
1532-6535
language eng
recordid cdi_proquest_miscellaneous_3051938371
source MEDLINE; Wiley Journals
subjects Adult
Aged
Computer Simulation
Dose-Response Relationship, Drug
Female
General Practice
Humans
Hypothyroidism - drug therapy
Machine Learning
Male
Middle Aged
Models, Biological
Precision Medicine - methods
Primary Health Care
Thyroxine - administration & dosage
Thyroxine - pharmacokinetics
Thyroxine - therapeutic use
title Model‐Informed Precision Dosing Using Machine Learning for Levothyroxine in General Practice: Development, Validation and Clinical Simulation Trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90Informed%20Precision%20Dosing%20Using%20Machine%20Learning%20for%20Levothyroxine%20in%20General%20Practice:%20Development,%20Validation%20and%20Clinical%20Simulation%20Trial&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Janssen%20Daalen,%20Jules%20M.&rft.date=2024-09&rft.volume=116&rft.issue=3&rft.spage=824&rft.epage=833&rft.pages=824-833&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.3293&rft_dat=%3Cproquest_cross%3E3051938371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051938371&rft_id=info:pmid/38711388&rfr_iscdi=true