Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes

Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-07, Vol.63 (30), p.e202405244-n/a
Hauptverfasser: Kar, Mega, Pozo‐Gonzalo, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e202405244
container_title Angewandte Chemie International Edition
container_volume 63
creator Kar, Mega
Pozo‐Gonzalo, Cristina
description Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries. Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.
doi_str_mv 10.1002/anie.202405244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051938297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051938297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</originalsourceid><addsrcrecordid>eNqF0M9Kw0AQBvBFFKzVq-cFL15S9082yR7bUjVQ9KIgXsJmM7Fb0k2bTZDc-giCb9gncUtFwYunmcPvG4YPoUtKRpQQdqOsgREjLCSCheERGlDBaMDjmB_7PeQ8iBNBT9GZc0vvk4REA_QyswtltbFvuF0Anva6Ajw3JeC6xK_G6t32M60LYwFPVNtCY8BhY3FaW6M93HSm2G0_JspBgWcV6Lapq74Fd45OSlU5uPieQ_R8O3ua3gfzx7t0Op4HmnERBjRWURmHApQUMQvLXGkheSgJZVDkJeicRaIQgsWU5oIpL6UWRU6ZVEXOgA_R9eHuuqk3Hbg2WxmnoaqUhbpzGSeCSp4wGXt69Ycu666x_juvEkI4iWTk1eigdFM710CZrRuzUk2fUZLti872RWc_RfuAPATeTQX9PzobP6Sz3-wXRmqCvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080030696</pqid></control><display><type>article</type><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><source>Wiley Online Library All Journals</source><creator>Kar, Mega ; Pozo‐Gonzalo, Cristina</creator><creatorcontrib>Kar, Mega ; Pozo‐Gonzalo, Cristina</creatorcontrib><description>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries. Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202405244</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Aqueous solutions ; batteries ; Battery cycles ; Decay rate ; electrolyte ; Electrolytes ; Hydrogen evolution reactions ; Iodine ; ionic liquid ; Ionic liquids ; Magnetic resonance spectroscopy ; NMR spectroscopy ; Solvation ; Zinc</subject><ispartof>Angewandte Chemie International Edition, 2024-07, Vol.63 (30), p.e202405244-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</cites><orcidid>0000-0003-4927-6254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202405244$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202405244$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kar, Mega</creatorcontrib><creatorcontrib>Pozo‐Gonzalo, Cristina</creatorcontrib><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><title>Angewandte Chemie International Edition</title><description>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries. Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</description><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>batteries</subject><subject>Battery cycles</subject><subject>Decay rate</subject><subject>electrolyte</subject><subject>Electrolytes</subject><subject>Hydrogen evolution reactions</subject><subject>Iodine</subject><subject>ionic liquid</subject><subject>Ionic liquids</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR spectroscopy</subject><subject>Solvation</subject><subject>Zinc</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0M9Kw0AQBvBFFKzVq-cFL15S9082yR7bUjVQ9KIgXsJmM7Fb0k2bTZDc-giCb9gncUtFwYunmcPvG4YPoUtKRpQQdqOsgREjLCSCheERGlDBaMDjmB_7PeQ8iBNBT9GZc0vvk4REA_QyswtltbFvuF0Anva6Ajw3JeC6xK_G6t32M60LYwFPVNtCY8BhY3FaW6M93HSm2G0_JspBgWcV6Lapq74Fd45OSlU5uPieQ_R8O3ua3gfzx7t0Op4HmnERBjRWURmHApQUMQvLXGkheSgJZVDkJeicRaIQgsWU5oIpL6UWRU6ZVEXOgA_R9eHuuqk3Hbg2WxmnoaqUhbpzGSeCSp4wGXt69Ycu666x_juvEkI4iWTk1eigdFM710CZrRuzUk2fUZLti872RWc_RfuAPATeTQX9PzobP6Sz3-wXRmqCvg</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Kar, Mega</creator><creator>Pozo‐Gonzalo, Cristina</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4927-6254</orcidid></search><sort><creationdate>20240722</creationdate><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><author>Kar, Mega ; Pozo‐Gonzalo, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>batteries</topic><topic>Battery cycles</topic><topic>Decay rate</topic><topic>electrolyte</topic><topic>Electrolytes</topic><topic>Hydrogen evolution reactions</topic><topic>Iodine</topic><topic>ionic liquid</topic><topic>Ionic liquids</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR spectroscopy</topic><topic>Solvation</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kar, Mega</creatorcontrib><creatorcontrib>Pozo‐Gonzalo, Cristina</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kar, Mega</au><au>Pozo‐Gonzalo, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-07-22</date><risdate>2024</risdate><volume>63</volume><issue>30</issue><spage>e202405244</spage><epage>n/a</epage><pages>e202405244-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries. Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202405244</doi><tpages>3</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4927-6254</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-07, Vol.63 (30), p.e202405244-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3051938297
source Wiley Online Library All Journals
subjects Aqueous electrolytes
Aqueous solutions
batteries
Battery cycles
Decay rate
electrolyte
Electrolytes
Hydrogen evolution reactions
Iodine
ionic liquid
Ionic liquids
Magnetic resonance spectroscopy
NMR spectroscopy
Solvation
Zinc
title Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Cycle%20Life%20of%20Zinc%E2%80%93Iodine%20Batteries%20in%20Ionic%20Liquid%E2%80%90Based%20Electrolytes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Kar,%20Mega&rft.date=2024-07-22&rft.volume=63&rft.issue=30&rft.spage=e202405244&rft.epage=n/a&rft.pages=e202405244-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202405244&rft_dat=%3Cproquest_cross%3E3051938297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080030696&rft_id=info:pmid/&rfr_iscdi=true