Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes
Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolutio...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-07, Vol.63 (30), p.e202405244-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e202405244 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Kar, Mega Pozo‐Gonzalo, Cristina |
description | Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries.
Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries. |
doi_str_mv | 10.1002/anie.202405244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051938297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051938297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</originalsourceid><addsrcrecordid>eNqF0M9Kw0AQBvBFFKzVq-cFL15S9082yR7bUjVQ9KIgXsJmM7Fb0k2bTZDc-giCb9gncUtFwYunmcPvG4YPoUtKRpQQdqOsgREjLCSCheERGlDBaMDjmB_7PeQ8iBNBT9GZc0vvk4REA_QyswtltbFvuF0Anva6Ajw3JeC6xK_G6t32M60LYwFPVNtCY8BhY3FaW6M93HSm2G0_JspBgWcV6Lapq74Fd45OSlU5uPieQ_R8O3ua3gfzx7t0Op4HmnERBjRWURmHApQUMQvLXGkheSgJZVDkJeicRaIQgsWU5oIpL6UWRU6ZVEXOgA_R9eHuuqk3Hbg2WxmnoaqUhbpzGSeCSp4wGXt69Ycu666x_juvEkI4iWTk1eigdFM710CZrRuzUk2fUZLti872RWc_RfuAPATeTQX9PzobP6Sz3-wXRmqCvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080030696</pqid></control><display><type>article</type><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><source>Wiley Online Library All Journals</source><creator>Kar, Mega ; Pozo‐Gonzalo, Cristina</creator><creatorcontrib>Kar, Mega ; Pozo‐Gonzalo, Cristina</creatorcontrib><description>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries.
Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202405244</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Aqueous solutions ; batteries ; Battery cycles ; Decay rate ; electrolyte ; Electrolytes ; Hydrogen evolution reactions ; Iodine ; ionic liquid ; Ionic liquids ; Magnetic resonance spectroscopy ; NMR spectroscopy ; Solvation ; Zinc</subject><ispartof>Angewandte Chemie International Edition, 2024-07, Vol.63 (30), p.e202405244-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</cites><orcidid>0000-0003-4927-6254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202405244$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202405244$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kar, Mega</creatorcontrib><creatorcontrib>Pozo‐Gonzalo, Cristina</creatorcontrib><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><title>Angewandte Chemie International Edition</title><description>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries.
Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</description><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>batteries</subject><subject>Battery cycles</subject><subject>Decay rate</subject><subject>electrolyte</subject><subject>Electrolytes</subject><subject>Hydrogen evolution reactions</subject><subject>Iodine</subject><subject>ionic liquid</subject><subject>Ionic liquids</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR spectroscopy</subject><subject>Solvation</subject><subject>Zinc</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0M9Kw0AQBvBFFKzVq-cFL15S9082yR7bUjVQ9KIgXsJmM7Fb0k2bTZDc-giCb9gncUtFwYunmcPvG4YPoUtKRpQQdqOsgREjLCSCheERGlDBaMDjmB_7PeQ8iBNBT9GZc0vvk4REA_QyswtltbFvuF0Anva6Ajw3JeC6xK_G6t32M60LYwFPVNtCY8BhY3FaW6M93HSm2G0_JspBgWcV6Lapq74Fd45OSlU5uPieQ_R8O3ua3gfzx7t0Op4HmnERBjRWURmHApQUMQvLXGkheSgJZVDkJeicRaIQgsWU5oIpL6UWRU6ZVEXOgA_R9eHuuqk3Hbg2WxmnoaqUhbpzGSeCSp4wGXt69Ycu666x_juvEkI4iWTk1eigdFM710CZrRuzUk2fUZLti872RWc_RfuAPATeTQX9PzobP6Sz3-wXRmqCvg</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Kar, Mega</creator><creator>Pozo‐Gonzalo, Cristina</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4927-6254</orcidid></search><sort><creationdate>20240722</creationdate><title>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</title><author>Kar, Mega ; Pozo‐Gonzalo, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2354-17a6f745ea95724fbac59349012edbfecb265d552711b52a45e9c5db129adb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>batteries</topic><topic>Battery cycles</topic><topic>Decay rate</topic><topic>electrolyte</topic><topic>Electrolytes</topic><topic>Hydrogen evolution reactions</topic><topic>Iodine</topic><topic>ionic liquid</topic><topic>Ionic liquids</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR spectroscopy</topic><topic>Solvation</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kar, Mega</creatorcontrib><creatorcontrib>Pozo‐Gonzalo, Cristina</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kar, Mega</au><au>Pozo‐Gonzalo, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-07-22</date><risdate>2024</risdate><volume>63</volume><issue>30</issue><spage>e202405244</spage><epage>n/a</epage><pages>e202405244-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Aqueous zinc–iodine (Zn−I2) batteries are gaining significant attention due to their low‐cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium‐based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3−, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g−1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn−I2 batteries.
Xiao et al. demonstrate the use of an ionic liquid (IL) additive in zinc‐iodine (Zn−I2) batteries, which serves to optimize Zn solvation and the anode interface, as well as aids in inhibiting polyiodide dissolution. The research findings reveal a capacity decay rate of 0.01 % per cycle over 18,000 cycles (4 A g−1) in a full cell. Such promising results suggest a significant advancement in the field, offering high performing Zn−I2 batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202405244</doi><tpages>3</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4927-6254</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-07, Vol.63 (30), p.e202405244-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3051938297 |
source | Wiley Online Library All Journals |
subjects | Aqueous electrolytes Aqueous solutions batteries Battery cycles Decay rate electrolyte Electrolytes Hydrogen evolution reactions Iodine ionic liquid Ionic liquids Magnetic resonance spectroscopy NMR spectroscopy Solvation Zinc |
title | Enhancing the Cycle Life of Zinc–Iodine Batteries in Ionic Liquid‐Based Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Cycle%20Life%20of%20Zinc%E2%80%93Iodine%20Batteries%20in%20Ionic%20Liquid%E2%80%90Based%20Electrolytes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Kar,%20Mega&rft.date=2024-07-22&rft.volume=63&rft.issue=30&rft.spage=e202405244&rft.epage=n/a&rft.pages=e202405244-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202405244&rft_dat=%3Cproquest_cross%3E3051938297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080030696&rft_id=info:pmid/&rfr_iscdi=true |