Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability
The near‐infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) ha...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-10, Vol.36 (40), p.e2403647-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e2403647 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Kim, Tae Hyuk Lee, Ji Hyeon Jang, Min Ho Lee, Gyeong Min Shim, Eun Soo Oh, Seunghyun Saeed, Muhammad Ahsan Lee, Min Jong Yu, Byoung‐Soo Hwang, Do Kyung Park, Chae Won Lee, Sae Youn Jo, Jea Woong Shim, Jae Won |
description | The near‐infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) have attracted attention for NIR applications owing to their scalability, low‐temperature processing, and notably low dark current density (JD), which is similar to that of SiPDs. However, the still high JD (at NIR band) and few measurements of noise equivalent powers (NEPs) pose challenges for accurate performance comparisons. This study addresses these issues by quantitatively characterizing the performance matrix and JD generation mechanism using electron‐blocking layers (EBLs) in OPDs. The energy offset at an EBL/photosensitive layer interface determines the thermal activation energy and directly affects JD. A newly synthesized EBL (3PAFBr) substantially enhances the interfacial energy barrier by forming a homogeneous contact owing to the improved anchoring ability of 3PAFBr. As a result, the OPD with 3PAFBr yields a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and several femtowatt‐scale NEPs. As far as it is known, this is an ultralow of JD in NIR OPDs. This emphasizes the necessity for quantitative performance characterization.
This study examines the JD and noise equiv. power (NEP) in NIR OPDs with varying electron blocking layers (EBLs). A newly synthesized EBL (named 3PAFBr) is introduced via a JD generation mechanism, significantly impacting NEP. The 3PAFBr‐based OPD demonstrates a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and achieves several femtowatt‐scale NEPs. |
doi_str_mv | 10.1002/adma.202403647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051427075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051427075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-f521783a2b1d00f97402447d0074b627e36a6a102f30dbf7193344f0cc47d38f3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYeBLUsUiQ2bTK9_EifLaFpgpNJBAtaR49gTVx672I7Q7HiEPiNPgkdTisSmG_vq3u8cXfsg9AbDCgOQCzHuxYoAYUBrxp-hBa4ILhm01XO0gJZWZVuz5hy9jPEWANoa6hfonDYcmlwv0H2Xkv_96_6rFFYVN97EfCoRcmvjdBBBjcU27IQzsvgy-eRHlZRMPsTiyonB5vFwKNbepeCtNW5XbFxSQQtphM2ICjuVsnardVSpSFPw827Kg0k4mcWdk5MPR103GGvS4RU608JG9frhXqLvH66-rT-V19uPm3V3XUrKKS91fiZvqCADHgF0y1n-A8ZzzdlQE65oLWqBgWgK46A5billTIOUGaKNpkv0_uR7F_yPWcXU702UylrhlJ9jT6HCjHDgVUbf_Yfe-jm4vF1PMSaU4TavskSrEyWDjzEo3d8Fsxfh0GPoj1n1x6z6x6yy4O2D7Tzs1fiI_w0nA-0J-GmsOjxh13eXn7t_5n8ACUWinw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112341978</pqid></control><display><type>article</type><title>Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability</title><source>Access via Wiley Online Library</source><creator>Kim, Tae Hyuk ; Lee, Ji Hyeon ; Jang, Min Ho ; Lee, Gyeong Min ; Shim, Eun Soo ; Oh, Seunghyun ; Saeed, Muhammad Ahsan ; Lee, Min Jong ; Yu, Byoung‐Soo ; Hwang, Do Kyung ; Park, Chae Won ; Lee, Sae Youn ; Jo, Jea Woong ; Shim, Jae Won</creator><creatorcontrib>Kim, Tae Hyuk ; Lee, Ji Hyeon ; Jang, Min Ho ; Lee, Gyeong Min ; Shim, Eun Soo ; Oh, Seunghyun ; Saeed, Muhammad Ahsan ; Lee, Min Jong ; Yu, Byoung‐Soo ; Hwang, Do Kyung ; Park, Chae Won ; Lee, Sae Youn ; Jo, Jea Woong ; Shim, Jae Won</creatorcontrib><description>The near‐infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) have attracted attention for NIR applications owing to their scalability, low‐temperature processing, and notably low dark current density (JD), which is similar to that of SiPDs. However, the still high JD (at NIR band) and few measurements of noise equivalent powers (NEPs) pose challenges for accurate performance comparisons. This study addresses these issues by quantitatively characterizing the performance matrix and JD generation mechanism using electron‐blocking layers (EBLs) in OPDs. The energy offset at an EBL/photosensitive layer interface determines the thermal activation energy and directly affects JD. A newly synthesized EBL (3PAFBr) substantially enhances the interfacial energy barrier by forming a homogeneous contact owing to the improved anchoring ability of 3PAFBr. As a result, the OPD with 3PAFBr yields a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and several femtowatt‐scale NEPs. As far as it is known, this is an ultralow of JD in NIR OPDs. This emphasizes the necessity for quantitative performance characterization.
This study examines the JD and noise equiv. power (NEP) in NIR OPDs with varying electron blocking layers (EBLs). A newly synthesized EBL (named 3PAFBr) is introduced via a JD generation mechanism, significantly impacting NEP. The 3PAFBr‐based OPD demonstrates a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and achieves several femtowatt‐scale NEPs.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403647</identifier><identifier>PMID: 38708960</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>attoscale‐noise organic photodiode ; Dark current ; electron‐blocking layer ; femtowatt‐scale noise equiv. power ; Infrared tracking ; interfacial energetic offset ; Interfacial energy ; Near infrared radiation ; Performance assessment ; Photometers ; Photosensitivity ; suppressed dark current</subject><ispartof>Advanced materials (Weinheim), 2024-10, Vol.36 (40), p.e2403647-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-f521783a2b1d00f97402447d0074b627e36a6a102f30dbf7193344f0cc47d38f3</citedby><cites>FETCH-LOGICAL-c3737-f521783a2b1d00f97402447d0074b627e36a6a102f30dbf7193344f0cc47d38f3</cites><orcidid>0000-0001-8387-160X ; 0000-0003-2163-2333 ; 0000-0001-8086-2644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38708960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Hyuk</creatorcontrib><creatorcontrib>Lee, Ji Hyeon</creatorcontrib><creatorcontrib>Jang, Min Ho</creatorcontrib><creatorcontrib>Lee, Gyeong Min</creatorcontrib><creatorcontrib>Shim, Eun Soo</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Saeed, Muhammad Ahsan</creatorcontrib><creatorcontrib>Lee, Min Jong</creatorcontrib><creatorcontrib>Yu, Byoung‐Soo</creatorcontrib><creatorcontrib>Hwang, Do Kyung</creatorcontrib><creatorcontrib>Park, Chae Won</creatorcontrib><creatorcontrib>Lee, Sae Youn</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><title>Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The near‐infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) have attracted attention for NIR applications owing to their scalability, low‐temperature processing, and notably low dark current density (JD), which is similar to that of SiPDs. However, the still high JD (at NIR band) and few measurements of noise equivalent powers (NEPs) pose challenges for accurate performance comparisons. This study addresses these issues by quantitatively characterizing the performance matrix and JD generation mechanism using electron‐blocking layers (EBLs) in OPDs. The energy offset at an EBL/photosensitive layer interface determines the thermal activation energy and directly affects JD. A newly synthesized EBL (3PAFBr) substantially enhances the interfacial energy barrier by forming a homogeneous contact owing to the improved anchoring ability of 3PAFBr. As a result, the OPD with 3PAFBr yields a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and several femtowatt‐scale NEPs. As far as it is known, this is an ultralow of JD in NIR OPDs. This emphasizes the necessity for quantitative performance characterization.
This study examines the JD and noise equiv. power (NEP) in NIR OPDs with varying electron blocking layers (EBLs). A newly synthesized EBL (named 3PAFBr) is introduced via a JD generation mechanism, significantly impacting NEP. The 3PAFBr‐based OPD demonstrates a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and achieves several femtowatt‐scale NEPs.</description><subject>attoscale‐noise organic photodiode</subject><subject>Dark current</subject><subject>electron‐blocking layer</subject><subject>femtowatt‐scale noise equiv. power</subject><subject>Infrared tracking</subject><subject>interfacial energetic offset</subject><subject>Interfacial energy</subject><subject>Near infrared radiation</subject><subject>Performance assessment</subject><subject>Photometers</subject><subject>Photosensitivity</subject><subject>suppressed dark current</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYeBLUsUiQ2bTK9_EifLaFpgpNJBAtaR49gTVx672I7Q7HiEPiNPgkdTisSmG_vq3u8cXfsg9AbDCgOQCzHuxYoAYUBrxp-hBa4ILhm01XO0gJZWZVuz5hy9jPEWANoa6hfonDYcmlwv0H2Xkv_96_6rFFYVN97EfCoRcmvjdBBBjcU27IQzsvgy-eRHlZRMPsTiyonB5vFwKNbepeCtNW5XbFxSQQtphM2ICjuVsnardVSpSFPw827Kg0k4mcWdk5MPR103GGvS4RU608JG9frhXqLvH66-rT-V19uPm3V3XUrKKS91fiZvqCADHgF0y1n-A8ZzzdlQE65oLWqBgWgK46A5billTIOUGaKNpkv0_uR7F_yPWcXU702UylrhlJ9jT6HCjHDgVUbf_Yfe-jm4vF1PMSaU4TavskSrEyWDjzEo3d8Fsxfh0GPoj1n1x6z6x6yy4O2D7Tzs1fiI_w0nA-0J-GmsOjxh13eXn7t_5n8ACUWinw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kim, Tae Hyuk</creator><creator>Lee, Ji Hyeon</creator><creator>Jang, Min Ho</creator><creator>Lee, Gyeong Min</creator><creator>Shim, Eun Soo</creator><creator>Oh, Seunghyun</creator><creator>Saeed, Muhammad Ahsan</creator><creator>Lee, Min Jong</creator><creator>Yu, Byoung‐Soo</creator><creator>Hwang, Do Kyung</creator><creator>Park, Chae Won</creator><creator>Lee, Sae Youn</creator><creator>Jo, Jea Woong</creator><creator>Shim, Jae Won</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0003-2163-2333</orcidid><orcidid>https://orcid.org/0000-0001-8086-2644</orcidid></search><sort><creationdate>20241001</creationdate><title>Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability</title><author>Kim, Tae Hyuk ; Lee, Ji Hyeon ; Jang, Min Ho ; Lee, Gyeong Min ; Shim, Eun Soo ; Oh, Seunghyun ; Saeed, Muhammad Ahsan ; Lee, Min Jong ; Yu, Byoung‐Soo ; Hwang, Do Kyung ; Park, Chae Won ; Lee, Sae Youn ; Jo, Jea Woong ; Shim, Jae Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-f521783a2b1d00f97402447d0074b627e36a6a102f30dbf7193344f0cc47d38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attoscale‐noise organic photodiode</topic><topic>Dark current</topic><topic>electron‐blocking layer</topic><topic>femtowatt‐scale noise equiv. power</topic><topic>Infrared tracking</topic><topic>interfacial energetic offset</topic><topic>Interfacial energy</topic><topic>Near infrared radiation</topic><topic>Performance assessment</topic><topic>Photometers</topic><topic>Photosensitivity</topic><topic>suppressed dark current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Hyuk</creatorcontrib><creatorcontrib>Lee, Ji Hyeon</creatorcontrib><creatorcontrib>Jang, Min Ho</creatorcontrib><creatorcontrib>Lee, Gyeong Min</creatorcontrib><creatorcontrib>Shim, Eun Soo</creatorcontrib><creatorcontrib>Oh, Seunghyun</creatorcontrib><creatorcontrib>Saeed, Muhammad Ahsan</creatorcontrib><creatorcontrib>Lee, Min Jong</creatorcontrib><creatorcontrib>Yu, Byoung‐Soo</creatorcontrib><creatorcontrib>Hwang, Do Kyung</creatorcontrib><creatorcontrib>Park, Chae Won</creatorcontrib><creatorcontrib>Lee, Sae Youn</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Hyuk</au><au>Lee, Ji Hyeon</au><au>Jang, Min Ho</au><au>Lee, Gyeong Min</au><au>Shim, Eun Soo</au><au>Oh, Seunghyun</au><au>Saeed, Muhammad Ahsan</au><au>Lee, Min Jong</au><au>Yu, Byoung‐Soo</au><au>Hwang, Do Kyung</au><au>Park, Chae Won</au><au>Lee, Sae Youn</au><au>Jo, Jea Woong</au><au>Shim, Jae Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>36</volume><issue>40</issue><spage>e2403647</spage><epage>n/a</epage><pages>e2403647-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The near‐infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) have attracted attention for NIR applications owing to their scalability, low‐temperature processing, and notably low dark current density (JD), which is similar to that of SiPDs. However, the still high JD (at NIR band) and few measurements of noise equivalent powers (NEPs) pose challenges for accurate performance comparisons. This study addresses these issues by quantitatively characterizing the performance matrix and JD generation mechanism using electron‐blocking layers (EBLs) in OPDs. The energy offset at an EBL/photosensitive layer interface determines the thermal activation energy and directly affects JD. A newly synthesized EBL (3PAFBr) substantially enhances the interfacial energy barrier by forming a homogeneous contact owing to the improved anchoring ability of 3PAFBr. As a result, the OPD with 3PAFBr yields a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and several femtowatt‐scale NEPs. As far as it is known, this is an ultralow of JD in NIR OPDs. This emphasizes the necessity for quantitative performance characterization.
This study examines the JD and noise equiv. power (NEP) in NIR OPDs with varying electron blocking layers (EBLs). A newly synthesized EBL (named 3PAFBr) is introduced via a JD generation mechanism, significantly impacting NEP. The 3PAFBr‐based OPD demonstrates a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → −0.1 V) and achieves several femtowatt‐scale NEPs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38708960</pmid><doi>10.1002/adma.202403647</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0003-2163-2333</orcidid><orcidid>https://orcid.org/0000-0001-8086-2644</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-10, Vol.36 (40), p.e2403647-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3051427075 |
source | Access via Wiley Online Library |
subjects | attoscale‐noise organic photodiode Dark current electron‐blocking layer femtowatt‐scale noise equiv. power Infrared tracking interfacial energetic offset Interfacial energy Near infrared radiation Performance assessment Photometers Photosensitivity suppressed dark current |
title | Atto‐Scale Noise Near‐Infrared Organic Photodetectors Enabled by Controlling Interfacial Energetic Offset through Enhanced Anchoring Ability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atto%E2%80%90Scale%20Noise%20Near%E2%80%90Infrared%20Organic%20Photodetectors%20Enabled%20by%20Controlling%20Interfacial%20Energetic%20Offset%20through%20Enhanced%20Anchoring%20Ability&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Tae%20Hyuk&rft.date=2024-10-01&rft.volume=36&rft.issue=40&rft.spage=e2403647&rft.epage=n/a&rft.pages=e2403647-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403647&rft_dat=%3Cproquest_cross%3E3051427075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112341978&rft_id=info:pmid/38708960&rfr_iscdi=true |