Can geomorphic flood descriptors coupled with machine learning models enhance in quantifying flood risks over data-scarce catchments? Development of a hybrid framework for Ganga basin (India)

Quantifying flood risks through a cascade of hydraulic-cum-hydrodynamic modelling is data-intensive and computationally demanding- a major constraint for economically struggling and data-scarce low and middle-income nations. Under such circumstances, geomorphic flood descriptors (GFDs), that encompa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-05
Hauptverfasser: Tripathi, Vaibhav, Mohanty, Mohit Prakash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!