In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries
With ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to rest...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (34), p.e2401089-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | e2401089 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sun, Sisheng Fan, Ersha Wang, Hongyi Lv, Xiaowei Zhang, Xiaodong Chen, Renjie Wu, Feng Li, Li |
description | With ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid‐phase sintering method. The evolution process of the Li‐supplement and grain‐recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2−xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface‐coated LiCoO2 achieves a high discharge‐specific capacity of 207.9 mA h g−1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.
A facile, direct, and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the performance of upcycled LCO at high voltage. Spinel‐shaped LiCoxMn2−xO4 coating on the upcycled LCO performs excellent electrochemical and structural stability. Cooperative strategy endows upcycled LiCoO2 with superior cyclability at 4.6 V. |
doi_str_mv | 10.1002/smll.202401089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3051425224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095514092</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2669-10fe961f3aa8ccece83327d6bd56b79da35772e941581771ca0e0b4ab9ede5613</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqWwZW2JDZsU23l6CRHQSkEgha4jx5lQV84DOxEKKz6Bb-RLcFXUBau5M3M0unMRuqRkQQlhN7bResEICwglCT9CMxpR34sSxo8PmpJTdGbtlhCfsiCeoc2qxbkaRpx2rR3MKAeocN6rFjTOxAQG54MolVafbr7u5SS1E5lKu2eG687gpXrb4BcwTjeileB2w0aNzc_X96pr8Z0YBjAK7Dk6qYW2cPFX52j9cP-aLr3s-XGV3mZez6KIe5TUwCNa-0IkUoKExPdZXEVlFUZlzCvhh3HMgAc0TGgcUykIkDIQJYcKQvfkHF3v7_amex_BDkWjrAStRQvdaAufhDRgIWOBQ6_-odtuNK1z5ygeOo5w5ii-pz6UhqnojWqEmQpKil3qxS714pB6kT9l2aHzfwFKt3la</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095514092</pqid></control><display><type>article</type><title>In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Sisheng ; Fan, Ersha ; Wang, Hongyi ; Lv, Xiaowei ; Zhang, Xiaodong ; Chen, Renjie ; Wu, Feng ; Li, Li</creator><creatorcontrib>Sun, Sisheng ; Fan, Ersha ; Wang, Hongyi ; Lv, Xiaowei ; Zhang, Xiaodong ; Chen, Renjie ; Wu, Feng ; Li, Li</creatorcontrib><description>With ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid‐phase sintering method. The evolution process of the Li‐supplement and grain‐recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2−xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface‐coated LiCoO2 achieves a high discharge‐specific capacity of 207.9 mA h g−1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.
A facile, direct, and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the performance of upcycled LCO at high voltage. Spinel‐shaped LiCoxMn2−xO4 coating on the upcycled LCO performs excellent electrochemical and structural stability. Cooperative strategy endows upcycled LiCoO2 with superior cyclability at 4.6 V.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202401089</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electrochemical analysis ; Electrode materials ; LiCoO2 ; Lithium compounds ; Lithium-ion batteries ; Recrystallization ; Recycling ; Regeneration ; spent lithium‐ion battery ; Spinel ; spinel coating ; Surface stability ; upcycling regeneration</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (34), p.e2401089-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8859-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202401089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202401089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Sun, Sisheng</creatorcontrib><creatorcontrib>Fan, Ersha</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>With ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid‐phase sintering method. The evolution process of the Li‐supplement and grain‐recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2−xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface‐coated LiCoO2 achieves a high discharge‐specific capacity of 207.9 mA h g−1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.
A facile, direct, and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the performance of upcycled LCO at high voltage. Spinel‐shaped LiCoxMn2−xO4 coating on the upcycled LCO performs excellent electrochemical and structural stability. Cooperative strategy endows upcycled LiCoO2 with superior cyclability at 4.6 V.</description><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>LiCoO2</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Recrystallization</subject><subject>Recycling</subject><subject>Regeneration</subject><subject>spent lithium‐ion battery</subject><subject>Spinel</subject><subject>spinel coating</subject><subject>Surface stability</subject><subject>upcycling regeneration</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqWwZW2JDZsU23l6CRHQSkEgha4jx5lQV84DOxEKKz6Bb-RLcFXUBau5M3M0unMRuqRkQQlhN7bResEICwglCT9CMxpR34sSxo8PmpJTdGbtlhCfsiCeoc2qxbkaRpx2rR3MKAeocN6rFjTOxAQG54MolVafbr7u5SS1E5lKu2eG687gpXrb4BcwTjeileB2w0aNzc_X96pr8Z0YBjAK7Dk6qYW2cPFX52j9cP-aLr3s-XGV3mZez6KIe5TUwCNa-0IkUoKExPdZXEVlFUZlzCvhh3HMgAc0TGgcUykIkDIQJYcKQvfkHF3v7_amex_BDkWjrAStRQvdaAufhDRgIWOBQ6_-odtuNK1z5ygeOo5w5ii-pz6UhqnojWqEmQpKil3qxS714pB6kT9l2aHzfwFKt3la</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sun, Sisheng</creator><creator>Fan, Ersha</creator><creator>Wang, Hongyi</creator><creator>Lv, Xiaowei</creator><creator>Zhang, Xiaodong</creator><creator>Chen, Renjie</creator><creator>Wu, Feng</creator><creator>Li, Li</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8859-076X</orcidid></search><sort><creationdate>20240801</creationdate><title>In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries</title><author>Sun, Sisheng ; Fan, Ersha ; Wang, Hongyi ; Lv, Xiaowei ; Zhang, Xiaodong ; Chen, Renjie ; Wu, Feng ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2669-10fe961f3aa8ccece83327d6bd56b79da35772e941581771ca0e0b4ab9ede5613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>LiCoO2</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Recrystallization</topic><topic>Recycling</topic><topic>Regeneration</topic><topic>spent lithium‐ion battery</topic><topic>Spinel</topic><topic>spinel coating</topic><topic>Surface stability</topic><topic>upcycling regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Sisheng</creatorcontrib><creatorcontrib>Fan, Ersha</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Sisheng</au><au>Fan, Ersha</au><au>Wang, Hongyi</au><au>Lv, Xiaowei</au><au>Zhang, Xiaodong</au><au>Chen, Renjie</au><au>Wu, Feng</au><au>Li, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>34</issue><spage>e2401089</spage><epage>n/a</epage><pages>e2401089-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>With ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid‐phase sintering method. The evolution process of the Li‐supplement and grain‐recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2−xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface‐coated LiCoO2 achieves a high discharge‐specific capacity of 207.9 mA h g−1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.
A facile, direct, and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the performance of upcycled LCO at high voltage. Spinel‐shaped LiCoxMn2−xO4 coating on the upcycled LCO performs excellent electrochemical and structural stability. Cooperative strategy endows upcycled LiCoO2 with superior cyclability at 4.6 V.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202401089</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8859-076X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (34), p.e2401089-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3051425224 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes Electrochemical analysis Electrode materials LiCoO2 Lithium compounds Lithium-ion batteries Recrystallization Recycling Regeneration spent lithium‐ion battery Spinel spinel coating Surface stability upcycling regeneration |
title | In Situ Constructed Spinel Layer Stabilized Upcycled LiCoO2 for High Performance Lithium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Constructed%20Spinel%20Layer%20Stabilized%20Upcycled%20LiCoO2%20for%20High%20Performance%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sun,%20Sisheng&rft.date=2024-08-01&rft.volume=20&rft.issue=34&rft.spage=e2401089&rft.epage=n/a&rft.pages=e2401089-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202401089&rft_dat=%3Cproquest_wiley%3E3095514092%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095514092&rft_id=info:pmid/&rfr_iscdi=true |