Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives

Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience bulletin 2024-09, Vol.40 (9), p.1333-1352
Hauptverfasser: Guo, Jing, He, Changyi, Song, Huimiao, Gao, Huiwu, Yao, Shi, Dong, Shan-Shan, Yang, Tie-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 9
container_start_page 1333
container_title Neuroscience bulletin
container_volume 40
creator Guo, Jing
He, Changyi
Song, Huimiao
Gao, Huiwu
Yao, Shi
Dong, Shan-Shan
Yang, Tie-Lin
description Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
doi_str_mv 10.1007/s12264-024-01214-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050942680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050942680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EglJ4AQ4oRy4B_8c-QgUFqYJKwNlK3U1qSONiJ5Xg6XFp4chhtWt5ZqT5EDoj-JJgXFxFQqnkOaZpCCU8J3toQLQWuaJE7adbFiwvsCyO0HGMbxhLXDB-iI6YKjCjhRyg-rVdg2tcW2fT4Jcubq5H6IN3y7LePG6cX5bhHULMKh-yZ7twX361CNC6MntZBN_Xi2yUEpwtm6xs59kYWuiczabJswLbuTXEE3RQlU2E090eote725fRfT55Gj-Mrie5pVp1OaiZkjNOFRMVnwvGGasw1kKCtACV1VRJKkqrwWqNraAwYwwIr7gQhM4ZG6KLbe4q-I8eYmdSJwtNU7bg-2gYFlhzKhVOUrqV2uBjDFCZVUilw6ch2GwAmy1gkwCbH8CGJNP5Lr-fLWH-Z_klmgRsK4jpq60hmDffhzZ1_i_2G73Yh1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050942680</pqid></control><display><type>article</type><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</creator><creatorcontrib>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</creatorcontrib><description>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</description><identifier>ISSN: 1673-7067</identifier><identifier>ISSN: 1995-8218</identifier><identifier>EISSN: 1995-8218</identifier><identifier>DOI: 10.1007/s12264-024-01214-1</identifier><identifier>PMID: 38703276</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anatomy ; Anesthesiology ; Biomedical and Life Sciences ; Biomedicine ; Human Physiology ; Neurology ; Neurosciences ; Pain Medicine ; Review</subject><ispartof>Neuroscience bulletin, 2024-09, Vol.40 (9), p.1333-1352</ispartof><rights>Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</cites><orcidid>0000-0001-7062-3025 ; 0000-0001-6976-4576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12264-024-01214-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12264-024-01214-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38703276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>He, Changyi</creatorcontrib><creatorcontrib>Song, Huimiao</creatorcontrib><creatorcontrib>Gao, Huiwu</creatorcontrib><creatorcontrib>Yao, Shi</creatorcontrib><creatorcontrib>Dong, Shan-Shan</creatorcontrib><creatorcontrib>Yang, Tie-Lin</creatorcontrib><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><title>Neuroscience bulletin</title><addtitle>Neurosci. Bull</addtitle><addtitle>Neurosci Bull</addtitle><description>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</description><subject>Anatomy</subject><subject>Anesthesiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Human Physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Pain Medicine</subject><subject>Review</subject><issn>1673-7067</issn><issn>1995-8218</issn><issn>1995-8218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EglJ4AQ4oRy4B_8c-QgUFqYJKwNlK3U1qSONiJ5Xg6XFp4chhtWt5ZqT5EDoj-JJgXFxFQqnkOaZpCCU8J3toQLQWuaJE7adbFiwvsCyO0HGMbxhLXDB-iI6YKjCjhRyg-rVdg2tcW2fT4Jcubq5H6IN3y7LePG6cX5bhHULMKh-yZ7twX361CNC6MntZBN_Xi2yUEpwtm6xs59kYWuiczabJswLbuTXEE3RQlU2E090eote725fRfT55Gj-Mrie5pVp1OaiZkjNOFRMVnwvGGasw1kKCtACV1VRJKkqrwWqNraAwYwwIr7gQhM4ZG6KLbe4q-I8eYmdSJwtNU7bg-2gYFlhzKhVOUrqV2uBjDFCZVUilw6ch2GwAmy1gkwCbH8CGJNP5Lr-fLWH-Z_klmgRsK4jpq60hmDffhzZ1_i_2G73Yh1s</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Guo, Jing</creator><creator>He, Changyi</creator><creator>Song, Huimiao</creator><creator>Gao, Huiwu</creator><creator>Yao, Shi</creator><creator>Dong, Shan-Shan</creator><creator>Yang, Tie-Lin</creator><general>Springer Nature Singapore</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7062-3025</orcidid><orcidid>https://orcid.org/0000-0001-6976-4576</orcidid></search><sort><creationdate>20240901</creationdate><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><author>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anatomy</topic><topic>Anesthesiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Human Physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Pain Medicine</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>He, Changyi</creatorcontrib><creatorcontrib>Song, Huimiao</creatorcontrib><creatorcontrib>Gao, Huiwu</creatorcontrib><creatorcontrib>Yao, Shi</creatorcontrib><creatorcontrib>Dong, Shan-Shan</creatorcontrib><creatorcontrib>Yang, Tie-Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>He, Changyi</au><au>Song, Huimiao</au><au>Gao, Huiwu</au><au>Yao, Shi</au><au>Dong, Shan-Shan</au><au>Yang, Tie-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</atitle><jtitle>Neuroscience bulletin</jtitle><stitle>Neurosci. Bull</stitle><addtitle>Neurosci Bull</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><spage>1333</spage><epage>1352</epage><pages>1333-1352</pages><issn>1673-7067</issn><issn>1995-8218</issn><eissn>1995-8218</eissn><abstract>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38703276</pmid><doi>10.1007/s12264-024-01214-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7062-3025</orcidid><orcidid>https://orcid.org/0000-0001-6976-4576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1673-7067
ispartof Neuroscience bulletin, 2024-09, Vol.40 (9), p.1333-1352
issn 1673-7067
1995-8218
1995-8218
language eng
recordid cdi_proquest_miscellaneous_3050942680
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Anatomy
Anesthesiology
Biomedical and Life Sciences
Biomedicine
Human Physiology
Neurology
Neurosciences
Pain Medicine
Review
title Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Promising%20Neuroimaging%20Biomarkers%20for%20Schizophrenia%20Through%20Clinical%20and%20Genetic%20Perspectives&rft.jtitle=Neuroscience%20bulletin&rft.au=Guo,%20Jing&rft.date=2024-09-01&rft.volume=40&rft.issue=9&rft.spage=1333&rft.epage=1352&rft.pages=1333-1352&rft.issn=1673-7067&rft.eissn=1995-8218&rft_id=info:doi/10.1007/s12264-024-01214-1&rft_dat=%3Cproquest_cross%3E3050942680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050942680&rft_id=info:pmid/38703276&rfr_iscdi=true