Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological sig...
Gespeichert in:
Veröffentlicht in: | Neuroscience bulletin 2024-09, Vol.40 (9), p.1333-1352 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1352 |
---|---|
container_issue | 9 |
container_start_page | 1333 |
container_title | Neuroscience bulletin |
container_volume | 40 |
creator | Guo, Jing He, Changyi Song, Huimiao Gao, Huiwu Yao, Shi Dong, Shan-Shan Yang, Tie-Lin |
description | Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia. |
doi_str_mv | 10.1007/s12264-024-01214-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050942680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050942680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EglJ4AQ4oRy4B_8c-QgUFqYJKwNlK3U1qSONiJ5Xg6XFp4chhtWt5ZqT5EDoj-JJgXFxFQqnkOaZpCCU8J3toQLQWuaJE7adbFiwvsCyO0HGMbxhLXDB-iI6YKjCjhRyg-rVdg2tcW2fT4Jcubq5H6IN3y7LePG6cX5bhHULMKh-yZ7twX361CNC6MntZBN_Xi2yUEpwtm6xs59kYWuiczabJswLbuTXEE3RQlU2E090eote725fRfT55Gj-Mrie5pVp1OaiZkjNOFRMVnwvGGasw1kKCtACV1VRJKkqrwWqNraAwYwwIr7gQhM4ZG6KLbe4q-I8eYmdSJwtNU7bg-2gYFlhzKhVOUrqV2uBjDFCZVUilw6ch2GwAmy1gkwCbH8CGJNP5Lr-fLWH-Z_klmgRsK4jpq60hmDffhzZ1_i_2G73Yh1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050942680</pqid></control><display><type>article</type><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</creator><creatorcontrib>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</creatorcontrib><description>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</description><identifier>ISSN: 1673-7067</identifier><identifier>ISSN: 1995-8218</identifier><identifier>EISSN: 1995-8218</identifier><identifier>DOI: 10.1007/s12264-024-01214-1</identifier><identifier>PMID: 38703276</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anatomy ; Anesthesiology ; Biomedical and Life Sciences ; Biomedicine ; Human Physiology ; Neurology ; Neurosciences ; Pain Medicine ; Review</subject><ispartof>Neuroscience bulletin, 2024-09, Vol.40 (9), p.1333-1352</ispartof><rights>Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</cites><orcidid>0000-0001-7062-3025 ; 0000-0001-6976-4576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12264-024-01214-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12264-024-01214-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38703276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>He, Changyi</creatorcontrib><creatorcontrib>Song, Huimiao</creatorcontrib><creatorcontrib>Gao, Huiwu</creatorcontrib><creatorcontrib>Yao, Shi</creatorcontrib><creatorcontrib>Dong, Shan-Shan</creatorcontrib><creatorcontrib>Yang, Tie-Lin</creatorcontrib><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><title>Neuroscience bulletin</title><addtitle>Neurosci. Bull</addtitle><addtitle>Neurosci Bull</addtitle><description>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</description><subject>Anatomy</subject><subject>Anesthesiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Human Physiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Pain Medicine</subject><subject>Review</subject><issn>1673-7067</issn><issn>1995-8218</issn><issn>1995-8218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EglJ4AQ4oRy4B_8c-QgUFqYJKwNlK3U1qSONiJ5Xg6XFp4chhtWt5ZqT5EDoj-JJgXFxFQqnkOaZpCCU8J3toQLQWuaJE7adbFiwvsCyO0HGMbxhLXDB-iI6YKjCjhRyg-rVdg2tcW2fT4Jcubq5H6IN3y7LePG6cX5bhHULMKh-yZ7twX361CNC6MntZBN_Xi2yUEpwtm6xs59kYWuiczabJswLbuTXEE3RQlU2E090eote725fRfT55Gj-Mrie5pVp1OaiZkjNOFRMVnwvGGasw1kKCtACV1VRJKkqrwWqNraAwYwwIr7gQhM4ZG6KLbe4q-I8eYmdSJwtNU7bg-2gYFlhzKhVOUrqV2uBjDFCZVUilw6ch2GwAmy1gkwCbH8CGJNP5Lr-fLWH-Z_klmgRsK4jpq60hmDffhzZ1_i_2G73Yh1s</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Guo, Jing</creator><creator>He, Changyi</creator><creator>Song, Huimiao</creator><creator>Gao, Huiwu</creator><creator>Yao, Shi</creator><creator>Dong, Shan-Shan</creator><creator>Yang, Tie-Lin</creator><general>Springer Nature Singapore</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7062-3025</orcidid><orcidid>https://orcid.org/0000-0001-6976-4576</orcidid></search><sort><creationdate>20240901</creationdate><title>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</title><author>Guo, Jing ; He, Changyi ; Song, Huimiao ; Gao, Huiwu ; Yao, Shi ; Dong, Shan-Shan ; Yang, Tie-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e8b86b42835f4d53433f00956e6ceefc928625ac9ec990c52eb33e14f45512d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anatomy</topic><topic>Anesthesiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Human Physiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Pain Medicine</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>He, Changyi</creatorcontrib><creatorcontrib>Song, Huimiao</creatorcontrib><creatorcontrib>Gao, Huiwu</creatorcontrib><creatorcontrib>Yao, Shi</creatorcontrib><creatorcontrib>Dong, Shan-Shan</creatorcontrib><creatorcontrib>Yang, Tie-Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>He, Changyi</au><au>Song, Huimiao</au><au>Gao, Huiwu</au><au>Yao, Shi</au><au>Dong, Shan-Shan</au><au>Yang, Tie-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives</atitle><jtitle>Neuroscience bulletin</jtitle><stitle>Neurosci. Bull</stitle><addtitle>Neurosci Bull</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><spage>1333</spage><epage>1352</epage><pages>1333-1352</pages><issn>1673-7067</issn><issn>1995-8218</issn><eissn>1995-8218</eissn><abstract>Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38703276</pmid><doi>10.1007/s12264-024-01214-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7062-3025</orcidid><orcidid>https://orcid.org/0000-0001-6976-4576</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-7067 |
ispartof | Neuroscience bulletin, 2024-09, Vol.40 (9), p.1333-1352 |
issn | 1673-7067 1995-8218 1995-8218 |
language | eng |
recordid | cdi_proquest_miscellaneous_3050942680 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Anatomy Anesthesiology Biomedical and Life Sciences Biomedicine Human Physiology Neurology Neurosciences Pain Medicine Review |
title | Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Promising%20Neuroimaging%20Biomarkers%20for%20Schizophrenia%20Through%20Clinical%20and%20Genetic%20Perspectives&rft.jtitle=Neuroscience%20bulletin&rft.au=Guo,%20Jing&rft.date=2024-09-01&rft.volume=40&rft.issue=9&rft.spage=1333&rft.epage=1352&rft.pages=1333-1352&rft.issn=1673-7067&rft.eissn=1995-8218&rft_id=info:doi/10.1007/s12264-024-01214-1&rft_dat=%3Cproquest_cross%3E3050942680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050942680&rft_id=info:pmid/38703276&rfr_iscdi=true |