A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy

Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-07, Vol.36 (30), p.e2403253-n/a
Hauptverfasser: Du, Yaqian, Zhao, Xudong, He, Fei, Gong, Haijiang, Yang, Jiani, Wu, Linzhi, Cui, Xianchang, Gai, Shili, Yang, Piaoping, Lin, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e2403253
container_title Advanced materials (Weinheim)
container_volume 36
creator Du, Yaqian
Zhao, Xudong
He, Fei
Gong, Haijiang
Yang, Jiani
Wu, Linzhi
Cui, Xianchang
Gai, Shili
Yang, Piaoping
Lin, Jun
description Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO‐VCu) are rationally designed and engineered for ferroelectricity‐enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron–hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as “a smart switch” to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor‐induced apoptosis and cuproptosis. BCO‐VCu induces apoptosis by triggering a burst of reactive oxygen species under ultrasound irradiation; it acts as a switch to reduce Cu+ efflux and alterations in proteins such as dihydrolipoic acid S‐acetyltransferase, ferredoxin 1, inducing the occurrence of cuproptosis. More importantly, it triggers immunogenic cell death, which causes a strong immune response.
doi_str_mv 10.1002/adma.202403253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050942570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084185518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-bb31cac9eec7ddc405f3403b4f9a1820ca4407415ea30d516e86f334bb3a14c13</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EoqWwMqJILCwpx7GdJmNUrhKXBVgj1zkprpI42AmoG4_AM_IkGLUUiYXJlvydT8f_T8ghhTEFiE5lUctxBBEHFgm2RYZURDTkkIptMoSUiTCNeTIge84tACCNId4lA5ZMgNGED4nOgiepZKOWn-8f581cN4hWN_PgAq01WKHqrFbBnWxMjYVW_j0ojQ2mfWtN2xmn3WnWrm_B1HhLpjr9Kjssguu67hvTPaOV7XKf7JSycniwPkfk8eL8YXoV3txfXk-zm1CxCWPhbMaokipFVJOiUBxEyfznZrxMJU0iUJJzmHAqUDIoBI0xiUvGuJ-TlCvKRuRk5fULvvTourzWTmFVyQZN73IGAlIeCZ_AiBz_QRemt43fzlMJp4kQNPHUeEUpa5yzWOat1bW0y5xC_l1C_l1CvinBDxyttf3Mh7bBf1L3QLoC3nSFy390eXZ2m_3KvwBLV5YV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084185518</pqid></control><display><type>article</type><title>A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Du, Yaqian ; Zhao, Xudong ; He, Fei ; Gong, Haijiang ; Yang, Jiani ; Wu, Linzhi ; Cui, Xianchang ; Gai, Shili ; Yang, Piaoping ; Lin, Jun</creator><creatorcontrib>Du, Yaqian ; Zhao, Xudong ; He, Fei ; Gong, Haijiang ; Yang, Jiani ; Wu, Linzhi ; Cui, Xianchang ; Gai, Shili ; Yang, Piaoping ; Lin, Jun</creatorcontrib><description>Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO‐VCu) are rationally designed and engineered for ferroelectricity‐enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron–hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as “a smart switch” to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor‐induced apoptosis and cuproptosis. BCO‐VCu induces apoptosis by triggering a burst of reactive oxygen species under ultrasound irradiation; it acts as a switch to reduce Cu+ efflux and alterations in proteins such as dihydrolipoic acid S‐acetyltransferase, ferredoxin 1, inducing the occurrence of cuproptosis. More importantly, it triggers immunogenic cell death, which causes a strong immune response.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403253</identifier><identifier>PMID: 38703184</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adenosine triphosphate ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bi2CuO4 ; Bismuth - chemistry ; Catalysis ; Catalytic activity ; Cell death ; Cell Line, Tumor ; Cell membranes ; Copper ; Copper - chemistry ; copper vacancies ; cuproptosis ; Effectiveness ; ferroelectric catalytic activity ; Ferroelectric materials ; Ferroelectricity ; Humans ; Immune system ; Immunotherapy ; Lymphocytes ; Mice ; Nanomaterials ; Nanomedicine - methods ; Nanoparticles - chemistry ; Reactive Oxygen Species - metabolism ; T-Lymphocytes - immunology</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2403253-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-bb31cac9eec7ddc405f3403b4f9a1820ca4407415ea30d516e86f334bb3a14c13</citedby><cites>FETCH-LOGICAL-c3733-bb31cac9eec7ddc405f3403b4f9a1820ca4407415ea30d516e86f334bb3a14c13</cites><orcidid>0000-0001-9572-2134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403253$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403253$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38703184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Yaqian</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Gong, Haijiang</creatorcontrib><creatorcontrib>Yang, Jiani</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Cui, Xianchang</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><title>A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO‐VCu) are rationally designed and engineered for ferroelectricity‐enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron–hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as “a smart switch” to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor‐induced apoptosis and cuproptosis. BCO‐VCu induces apoptosis by triggering a burst of reactive oxygen species under ultrasound irradiation; it acts as a switch to reduce Cu+ efflux and alterations in proteins such as dihydrolipoic acid S‐acetyltransferase, ferredoxin 1, inducing the occurrence of cuproptosis. More importantly, it triggers immunogenic cell death, which causes a strong immune response.</description><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bi2CuO4</subject><subject>Bismuth - chemistry</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell membranes</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>copper vacancies</subject><subject>cuproptosis</subject><subject>Effectiveness</subject><subject>ferroelectric catalytic activity</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Nanomedicine - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>T-Lymphocytes - immunology</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOwzAUhi0EoqWwMqJILCwpx7GdJmNUrhKXBVgj1zkprpI42AmoG4_AM_IkGLUUiYXJlvydT8f_T8ghhTEFiE5lUctxBBEHFgm2RYZURDTkkIptMoSUiTCNeTIge84tACCNId4lA5ZMgNGED4nOgiepZKOWn-8f581cN4hWN_PgAq01WKHqrFbBnWxMjYVW_j0ojQ2mfWtN2xmn3WnWrm_B1HhLpjr9Kjssguu67hvTPaOV7XKf7JSycniwPkfk8eL8YXoV3txfXk-zm1CxCWPhbMaokipFVJOiUBxEyfznZrxMJU0iUJJzmHAqUDIoBI0xiUvGuJ-TlCvKRuRk5fULvvTourzWTmFVyQZN73IGAlIeCZ_AiBz_QRemt43fzlMJp4kQNPHUeEUpa5yzWOat1bW0y5xC_l1C_l1CvinBDxyttf3Mh7bBf1L3QLoC3nSFy390eXZ2m_3KvwBLV5YV</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Du, Yaqian</creator><creator>Zhao, Xudong</creator><creator>He, Fei</creator><creator>Gong, Haijiang</creator><creator>Yang, Jiani</creator><creator>Wu, Linzhi</creator><creator>Cui, Xianchang</creator><creator>Gai, Shili</creator><creator>Yang, Piaoping</creator><creator>Lin, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9572-2134</orcidid></search><sort><creationdate>20240701</creationdate><title>A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy</title><author>Du, Yaqian ; Zhao, Xudong ; He, Fei ; Gong, Haijiang ; Yang, Jiani ; Wu, Linzhi ; Cui, Xianchang ; Gai, Shili ; Yang, Piaoping ; Lin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-bb31cac9eec7ddc405f3403b4f9a1820ca4407415ea30d516e86f334bb3a14c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bi2CuO4</topic><topic>Bismuth - chemistry</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell membranes</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>copper vacancies</topic><topic>cuproptosis</topic><topic>Effectiveness</topic><topic>ferroelectric catalytic activity</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Nanomedicine - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>T-Lymphocytes - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yaqian</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Gong, Haijiang</creatorcontrib><creatorcontrib>Yang, Jiani</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Cui, Xianchang</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yaqian</au><au>Zhao, Xudong</au><au>He, Fei</au><au>Gong, Haijiang</au><au>Yang, Jiani</au><au>Wu, Linzhi</au><au>Cui, Xianchang</au><au>Gai, Shili</au><au>Yang, Piaoping</au><au>Lin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>30</issue><spage>e2403253</spage><epage>n/a</epage><pages>e2403253-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO‐VCu) are rationally designed and engineered for ferroelectricity‐enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron–hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as “a smart switch” to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor‐induced apoptosis and cuproptosis. BCO‐VCu induces apoptosis by triggering a burst of reactive oxygen species under ultrasound irradiation; it acts as a switch to reduce Cu+ efflux and alterations in proteins such as dihydrolipoic acid S‐acetyltransferase, ferredoxin 1, inducing the occurrence of cuproptosis. More importantly, it triggers immunogenic cell death, which causes a strong immune response.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38703184</pmid><doi>10.1002/adma.202403253</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9572-2134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2403253-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3050942570
source MEDLINE; Wiley Online Library All Journals
subjects Adenosine triphosphate
Animals
Apoptosis
Apoptosis - drug effects
Bi2CuO4
Bismuth - chemistry
Catalysis
Catalytic activity
Cell death
Cell Line, Tumor
Cell membranes
Copper
Copper - chemistry
copper vacancies
cuproptosis
Effectiveness
ferroelectric catalytic activity
Ferroelectric materials
Ferroelectricity
Humans
Immune system
Immunotherapy
Lymphocytes
Mice
Nanomaterials
Nanomedicine - methods
Nanoparticles - chemistry
Reactive Oxygen Species - metabolism
T-Lymphocytes - immunology
title A Vacancy‐Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co‐Activated Immunotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vacancy%E2%80%90Engineering%20Ferroelectric%20Nanomedicine%20for%20Cuproptosis/Apoptosis%20Co%E2%80%90Activated%20Immunotherapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Du,%20Yaqian&rft.date=2024-07-01&rft.volume=36&rft.issue=30&rft.spage=e2403253&rft.epage=n/a&rft.pages=e2403253-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403253&rft_dat=%3Cproquest_cross%3E3084185518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084185518&rft_id=info:pmid/38703184&rfr_iscdi=true