Fingertip dynamic response simulated across excitation points and frequencies

Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the defor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2024-08, Vol.23 (4), p.1369-1376
Hauptverfasser: Serhat, Gokhan, Kuchenbecker, Katherine J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1376
container_issue 4
container_start_page 1369
container_title Biomechanics and modeling in mechanobiology
container_volume 23
creator Serhat, Gokhan
Kuchenbecker, Katherine J.
description Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.
doi_str_mv 10.1007/s10237-024-01844-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050937654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095805866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldTbZfB2lWBUqXvQc0mxWUrrZNdkF--9NP6zgwVMG8sw7Mw9ClwXcFgD8LhaACc8BlzkUoizz8giNC1bwnMsSjg81lSN0FuMSAAMR5BSNiOApQIgxepk5_2FD77qsWnvdOJMFG7vWR5tF1wwr3dsq0ya0MWb2y7he9671Wdc638dM-yqrg_0crDfOxnN0UutVtBf7d4LeZw9v06d8_vr4PL2f54Zw6PMKuE5rQb3ABoRkTDNbUVnjBcdSM0OoNZSx0hS6Kq2sgOJa1gvNDSZEYEwm6GaX24U2zY69alw0drXS3rZDVAQoSMIZLRN6_QddtkPwabtESSqACsYShXfU9tBga9UF1-iwVgWojWy1k62SbLWVrTbRV_voYdHY6tDyYzcBZAfE9LXR_Dv7n9hvvkyKOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095805866</pqid></control><display><type>article</type><title>Fingertip dynamic response simulated across excitation points and frequencies</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Serhat, Gokhan ; Kuchenbecker, Katherine J.</creator><creatorcontrib>Serhat, Gokhan ; Kuchenbecker, Katherine J.</creatorcontrib><description>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-024-01844-4</identifier><identifier>PMID: 38700788</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuation ; Amplitudes ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomedical Engineering and Bioengineering ; Biophysics ; Computer Simulation ; Deformation ; Deformation analysis ; Depth perception ; Dynamic response ; Engineering ; Excitation ; Finger ; Fingers - physiology ; Finite Element Analysis ; Finite element method ; Frequency dependence ; Frequency response functions ; Haptics ; Humans ; Models, Biological ; Original Paper ; Skin ; Tactile perception ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-08, Vol.23 (4), p.1369-1376</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-024-01844-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-024-01844-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38700788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serhat, Gokhan</creatorcontrib><creatorcontrib>Kuchenbecker, Katherine J.</creatorcontrib><title>Fingertip dynamic response simulated across excitation points and frequencies</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</description><subject>Actuation</subject><subject>Amplitudes</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Depth perception</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Excitation</subject><subject>Finger</subject><subject>Fingers - physiology</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Frequency dependence</subject><subject>Frequency response functions</subject><subject>Haptics</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Original Paper</subject><subject>Skin</subject><subject>Tactile perception</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldTbZfB2lWBUqXvQc0mxWUrrZNdkF--9NP6zgwVMG8sw7Mw9ClwXcFgD8LhaACc8BlzkUoizz8giNC1bwnMsSjg81lSN0FuMSAAMR5BSNiOApQIgxepk5_2FD77qsWnvdOJMFG7vWR5tF1wwr3dsq0ya0MWb2y7he9671Wdc638dM-yqrg_0crDfOxnN0UutVtBf7d4LeZw9v06d8_vr4PL2f54Zw6PMKuE5rQb3ABoRkTDNbUVnjBcdSM0OoNZSx0hS6Kq2sgOJa1gvNDSZEYEwm6GaX24U2zY69alw0drXS3rZDVAQoSMIZLRN6_QddtkPwabtESSqACsYShXfU9tBga9UF1-iwVgWojWy1k62SbLWVrTbRV_voYdHY6tDyYzcBZAfE9LXR_Dv7n9hvvkyKOw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Serhat, Gokhan</creator><creator>Kuchenbecker, Katherine J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Fingertip dynamic response simulated across excitation points and frequencies</title><author>Serhat, Gokhan ; Kuchenbecker, Katherine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Amplitudes</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Depth perception</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Excitation</topic><topic>Finger</topic><topic>Fingers - physiology</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Frequency dependence</topic><topic>Frequency response functions</topic><topic>Haptics</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Original Paper</topic><topic>Skin</topic><topic>Tactile perception</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serhat, Gokhan</creatorcontrib><creatorcontrib>Kuchenbecker, Katherine J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serhat, Gokhan</au><au>Kuchenbecker, Katherine J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingertip dynamic response simulated across excitation points and frequencies</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>1369</spage><epage>1376</epage><pages>1369-1376</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38700788</pmid><doi>10.1007/s10237-024-01844-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2024-08, Vol.23 (4), p.1369-1376
issn 1617-7959
1617-7940
1617-7940
language eng
recordid cdi_proquest_miscellaneous_3050937654
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Actuation
Amplitudes
Biological and Medical Physics
Biomechanical Phenomena
Biomedical Engineering and Bioengineering
Biophysics
Computer Simulation
Deformation
Deformation analysis
Depth perception
Dynamic response
Engineering
Excitation
Finger
Fingers - physiology
Finite Element Analysis
Finite element method
Frequency dependence
Frequency response functions
Haptics
Humans
Models, Biological
Original Paper
Skin
Tactile perception
Theoretical and Applied Mechanics
Vibration
title Fingertip dynamic response simulated across excitation points and frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingertip%20dynamic%20response%20simulated%20across%20excitation%20points%20and%20frequencies&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Serhat,%20Gokhan&rft.date=2024-08-01&rft.volume=23&rft.issue=4&rft.spage=1369&rft.epage=1376&rft.pages=1369-1376&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-024-01844-4&rft_dat=%3Cproquest_cross%3E3095805866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095805866&rft_id=info:pmid/38700788&rfr_iscdi=true