Fingertip dynamic response simulated across excitation points and frequencies
Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the defor...
Gespeichert in:
Veröffentlicht in: | Biomechanics and modeling in mechanobiology 2024-08, Vol.23 (4), p.1369-1376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1376 |
---|---|
container_issue | 4 |
container_start_page | 1369 |
container_title | Biomechanics and modeling in mechanobiology |
container_volume | 23 |
creator | Serhat, Gokhan Kuchenbecker, Katherine J. |
description | Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices. |
doi_str_mv | 10.1007/s10237-024-01844-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050937654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095805866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldTbZfB2lWBUqXvQc0mxWUrrZNdkF--9NP6zgwVMG8sw7Mw9ClwXcFgD8LhaACc8BlzkUoizz8giNC1bwnMsSjg81lSN0FuMSAAMR5BSNiOApQIgxepk5_2FD77qsWnvdOJMFG7vWR5tF1wwr3dsq0ya0MWb2y7he9671Wdc638dM-yqrg_0crDfOxnN0UutVtBf7d4LeZw9v06d8_vr4PL2f54Zw6PMKuE5rQb3ABoRkTDNbUVnjBcdSM0OoNZSx0hS6Kq2sgOJa1gvNDSZEYEwm6GaX24U2zY69alw0drXS3rZDVAQoSMIZLRN6_QddtkPwabtESSqACsYShXfU9tBga9UF1-iwVgWojWy1k62SbLWVrTbRV_voYdHY6tDyYzcBZAfE9LXR_Dv7n9hvvkyKOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095805866</pqid></control><display><type>article</type><title>Fingertip dynamic response simulated across excitation points and frequencies</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Serhat, Gokhan ; Kuchenbecker, Katherine J.</creator><creatorcontrib>Serhat, Gokhan ; Kuchenbecker, Katherine J.</creatorcontrib><description>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-024-01844-4</identifier><identifier>PMID: 38700788</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuation ; Amplitudes ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomedical Engineering and Bioengineering ; Biophysics ; Computer Simulation ; Deformation ; Deformation analysis ; Depth perception ; Dynamic response ; Engineering ; Excitation ; Finger ; Fingers - physiology ; Finite Element Analysis ; Finite element method ; Frequency dependence ; Frequency response functions ; Haptics ; Humans ; Models, Biological ; Original Paper ; Skin ; Tactile perception ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-08, Vol.23 (4), p.1369-1376</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-024-01844-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-024-01844-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38700788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serhat, Gokhan</creatorcontrib><creatorcontrib>Kuchenbecker, Katherine J.</creatorcontrib><title>Fingertip dynamic response simulated across excitation points and frequencies</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</description><subject>Actuation</subject><subject>Amplitudes</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Depth perception</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Excitation</subject><subject>Finger</subject><subject>Fingers - physiology</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Frequency dependence</subject><subject>Frequency response functions</subject><subject>Haptics</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Original Paper</subject><subject>Skin</subject><subject>Tactile perception</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldTbZfB2lWBUqXvQc0mxWUrrZNdkF--9NP6zgwVMG8sw7Mw9ClwXcFgD8LhaACc8BlzkUoizz8giNC1bwnMsSjg81lSN0FuMSAAMR5BSNiOApQIgxepk5_2FD77qsWnvdOJMFG7vWR5tF1wwr3dsq0ya0MWb2y7he9671Wdc638dM-yqrg_0crDfOxnN0UutVtBf7d4LeZw9v06d8_vr4PL2f54Zw6PMKuE5rQb3ABoRkTDNbUVnjBcdSM0OoNZSx0hS6Kq2sgOJa1gvNDSZEYEwm6GaX24U2zY69alw0drXS3rZDVAQoSMIZLRN6_QddtkPwabtESSqACsYShXfU9tBga9UF1-iwVgWojWy1k62SbLWVrTbRV_voYdHY6tDyYzcBZAfE9LXR_Dv7n9hvvkyKOw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Serhat, Gokhan</creator><creator>Kuchenbecker, Katherine J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Fingertip dynamic response simulated across excitation points and frequencies</title><author>Serhat, Gokhan ; Kuchenbecker, Katherine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-d07a7950fb2c08966a6ed59f2b729a6c35ec5664c1ad4e9d052f9fba7c2338223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Amplitudes</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Depth perception</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Excitation</topic><topic>Finger</topic><topic>Fingers - physiology</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Frequency dependence</topic><topic>Frequency response functions</topic><topic>Haptics</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Original Paper</topic><topic>Skin</topic><topic>Tactile perception</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serhat, Gokhan</creatorcontrib><creatorcontrib>Kuchenbecker, Katherine J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serhat, Gokhan</au><au>Kuchenbecker, Katherine J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingertip dynamic response simulated across excitation points and frequencies</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>1369</spage><epage>1376</epage><pages>1369-1376</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38700788</pmid><doi>10.1007/s10237-024-01844-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7959 |
ispartof | Biomechanics and modeling in mechanobiology, 2024-08, Vol.23 (4), p.1369-1376 |
issn | 1617-7959 1617-7940 1617-7940 |
language | eng |
recordid | cdi_proquest_miscellaneous_3050937654 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Actuation Amplitudes Biological and Medical Physics Biomechanical Phenomena Biomedical Engineering and Bioengineering Biophysics Computer Simulation Deformation Deformation analysis Depth perception Dynamic response Engineering Excitation Finger Fingers - physiology Finite Element Analysis Finite element method Frequency dependence Frequency response functions Haptics Humans Models, Biological Original Paper Skin Tactile perception Theoretical and Applied Mechanics Vibration |
title | Fingertip dynamic response simulated across excitation points and frequencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingertip%20dynamic%20response%20simulated%20across%20excitation%20points%20and%20frequencies&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Serhat,%20Gokhan&rft.date=2024-08-01&rft.volume=23&rft.issue=4&rft.spage=1369&rft.epage=1376&rft.pages=1369-1376&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-024-01844-4&rft_dat=%3Cproquest_cross%3E3095805866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095805866&rft_id=info:pmid/38700788&rfr_iscdi=true |